
1

Architectural exploration
of heterogeneous memory systems

Marcos Horro, Gabriel Rodrı́guez, Juan Touriño, Mahmut T. Kandemir

Abstract—Heterogeneous systems appear as a viable design
alternative for the dark silicon era. In this paradigm, a processor
chip includes several different technological alternatives for im-
plementing a certain logical block (e.g., core, on-chip memories)
which cannot be used at the same time due to power constraints.
The programmer and compiler are then responsible for select-
ing which of the alternatives should be used for maximizing
performance and/or energy efficiency for a given application.
This paper presents an initial approach for the exploration of
different technological alternatives for the implementation of
on-chip memories. It hinges on a linear programming-based
model for theoretically comparing the performance offered by the
available alternatives, namely SRAM and STT-RAM scratchpads
or caches. Experimental results using a cycle-accurate simulation
tool confirm that this is a viable model for implementation into
production compilers.

Index Terms—scratchpad memories, cache memories, hetero-
geneous architectures, dark silicon, power wall, memory wall,
gem5.

I. INTRODUCTION

THE end of Dennard scaling has brought processor per-
formance to a near standstill in recent years, pushing

architects towards designing increasingly parallel computers.
Even with this paradigm shift, the power wall is expected to
soon limit multicore scaling. A dark silicon future [1] has
been proposed, in which chips will incorporate a high number
of very specialized hardware such as vector execution units,
tunable memory hierarchies and even different heterogeneous
core technologies. In this paradigm, users, compilers and
runtime cooperate to choose which parts of the core to use,
under a certain power budget, for executing a given application
under given QoS restrictions.

This paper focuses on the analysis and simulation of het-
erogeneous memory hierarchies using the gem5 simulator, a
widely used tool developed by key players in the industry such
as ARM, Intel, or Google. Its biggest potential is the ability
to create new components or modify existing ones in order
to perform architectural exploration. Extensions to simulate
scratchpad memories in this framework are proposed, and used
to assess the power-performance trade-off of different memory
configurations and technologies. Profiling data is fed to an
operational research framework that decides which memory
units to enable from an available pool. This mathematical
framework takes variable placement decisions by checking

M. Horro, G. Rodrı́guez and J. Touriño are with the
Department of Electronics and Systems, Universidade da Coruña,
{marcos.horro,grodriguez,juan}@udc.es.

M. T. Kandemir is with the Department of Computer Science and Engi-
neering, Pennsylvania State University, kandemir@cse.psu.edu.

whether an access presents reuse that is easily exploitable
by a regular cache, or whether the LRU algorithm and cache
conflicts make it advisable to manually allocate the variable
to a scratchpad to better take advantage of the available
locality. Taking into account the hardware characteristics of
the different available memory modules, access and transfer
costs for each possible allocation are calculated, and a final
allocation is decided considering also memory sizes and power
budgets.

This paper is organized as follows. Section II introduces
scratchpad memories. Section III analyzes the gem5 frame-
work and discusses the simulation of scratchpad memories
in the system. The mathematical model for data allocation is
presented in Section IV. Experimental results using SRAM
caches and STT-RAM scratchpad memories demonstrate the
feasibility of the proposed approach, as shown in Section V.
Finally, Section VI concludes the paper.

II. SCRATCHPAD MEMORIES

The importance and complexity of the on-chip memory
hierarchy has increased with the advances in processor perfor-
mance [2], in an attempt to bridge the gap between memory
and processor speeds. Nowadays it is possible to find several
different types of memories integrated in a single hierar-
chy, e.g., private vs. shared ones, or exclusive vs. inclusive.
Scratchpad memories (SPMs) are one type of fast, random-
access memories which are sometimes used as an alternative
to cache memories. The main feature of scratchpads is its pro-
grammability, i.e., the possibility of handling the data allocated
using special-purpose instructions placed by the compiler or
programmer. In contrast, the contents of cache memories
are controlled automatically by the hardware, for instance
using the LRU algorithm. The use of scratchpad memories is
widely extended in embedded systems, e.g. real time systems.
SPM guarantees a fixed access latency whereas an access
to the cache may result in a miss thereby incurring longer
latency due to off-chip access [3] [4]. This unpredictability of
caches is undesirable to meet hard timing constraints. Besides,
scratchpad memories, having no tag array, are potentially more
efficient energy- and performance-wise. Nevertheless, cache
memories are largely used in general purpose processors,
mainly because efficiently employing a scratchpad memory
implies recompiling the code for different SPM features (e.g.,
size), while the LRU algorithm employed by caches is capable
of automatically exploiting locality in a reasonable way. The
use of one or the other flavor of on-chip memory becomes then
a performance/effort choice. To exploit this trade-off, several



2

specific purpose architectures have implemented scratchpad
memories:
• Cell IBM [5]: this architecture was used in the nodes

of the MareNostrum supercomputer at the Barcelona
Supercomputing Center [6] and in the main core of
PlayStation 3, as well as in premium Toshiba TVs [7],
amongst others.

• PlayStation 2 [8]: this console included small scratchpad
memories managed by the CPU and GPU.

• Digital Signal Processor (DSP) [9]: SODA’s architecture
includes a private scratchpad memory for each processing
unit and a global scratchpad memory that can be accessed
for any unit.

• Knights Landing’s architecture Intel Xeon Phi [10]: this
architecture uses MCDRAM memories. The processor
has access to an addressable memory with high band-
width, and therefore the concept is similar to that of
scratchpad memories. However it is also remarkable that,
in contrast with the previous examples, Intel Xeon Phi is
a manycore architecture.

There has also been at least an implementation of scratch-
pad memories in a general purpose architecture, as Cyrix
6X86MX [11] already implemented a “scratchpad RAM”.
This 32-bit x86-compatible microprocessor, released in 1996,
implemented a large Primary Cache of 64kB. This cache could
be turned into a scratchpad RAM memory. The cache area set
aside as scratchpad memory acted as a private memory for the
CPU and did not participate in cache operations.

III. INTEGRATION OF SCRATCHPAD MEMORIES IN GEM5

Simulators are crucial tools in architectural development and
exploration, since they allow reasonably accurate estimations
with almost negligible cost in comparison with lithographic or
FPGA solutions. Thus, there have appeared many approaches
with different granularity focused on concrete subsystems
and other with holistic nature. Table I compares different
simulators with both private licenses, as Simics, and open
source licenses, which are the rest.

gem5 is a framework for performing cycle-accurate com-
puter architecture simulations. The main reasons for choosing
gem5 over the rest in this work have been: (i) its current
development and implication of different organizations such
as Google, Intel or ARM, as well as its large community
of users; (ii) its open source license; and (iii) the possibility
of simulating different ISAs. In addition, the modularity of
the platform allows an easy modification of the system and
the integration of new components. It provides two modes of
operation: full system and system call emulation mode. The
latter is interesting for executing benchmarks without loading
an OS image. Regarding memory hierarchy simulation, there
are two modes: classic and Ruby. An advantage of the classic
mode is its simplicity. In the Ruby system memories are
specified as finite state machines, and it is focused on studying
the impact of using different cache coherence protocols.

In this paper, the main goal of including scratchpad mem-
ories in the system is to reduce energy consumption. Cache
memory energy constitutes a major part of modern processor

TABLE I
DIFFERENCES BETWEEN SIMULATORS ACCORDING TO THE FOLLOWING

CRITERIA: WHETHER THE PLATFORM IS OR NOT IN CURRENT
DEVELOPMENT, INSTRUCTION SET ARCHITECTURE (ISA) SUPPORTED

AND ACCURACY. DATA EXTRACTED FROM [12] [13]

Sim. Dev. ISA(s) Accuracy

Simics Yes Alpha, ARM, M68k,
MIPS, PowerPC,
SPARC, x86

Functional

SimFlex No SPARC, x86 (requires
Simics)

Cycle

GEMS No SPARC (requires Sim-
ics)

Timing

m5 No Alpha, MIPS, SPARC Cycle

MARSS No x86 (requires QEMU) Cycle

OVPsim Yes ARM, MIPS, x86 Functional

PTLsim No x86 (requires Xen and
KVM/QEMU)

Cycle

Simple
Scalar

No Alpha, ARM, Pow-
erPC, x86

Cycle

gem5 Yes Alpha, ARM, MIPS,
PowerPC, SPARC,
x86

Cycle

consumption [14] [15], the main reason being the need to
activate both the tag and data regions to obtain a certain
line, while a random-access memory only needs a single array
access. Besides, cache misses also imply penalties in energy
consumption.

Moreover, the concept of scratchpad memories does not dif-
fer from conventional memories, i.e., RAM memory, as their
contents can be allocated and programmed by the application
code. Thus, in order to implement scratchpad memories (SPM)
in gem5, the starting point has been the memory modules al-
ready implemented (SimpleMemory class). We have adapted
this implementation in order to add new parameters, such as
latencies.

Fig. 1. Original architectural scheme in gem5



3

Fig. 2. Architectural scheme including SPM in gem5

Regarding the connection of these memories to the system,
we considered enabling a new and specific port in the CPU.
However, this was deemed a nonportable approach, since
each different processor included in gem5 would need to be
independently adapted. For this reason, we decided to use the
already implemented crossbars. In the gem5 classic memory
system, CPUs are provided with three ports: a system port and
two ports for data and instruction caches. The system port,
by default, is connected to the main bus (membus) where all
memory devices are connected, e.g. main memory, I/O devices,
etc. We modified these connections, creating a new crossbar
which induces no latencies nor overheads where scratchpad
memories are connected. This configuration connects CPU,
cache memories, membus and scratchpad memories. Basi-
cally, this crossbar acts like a “bridge” between all the com-
ponents. Figures 1 and 2 illustrate the difference between the
original configuration and the modified architecture proposed.

The last step in order to integrate these memories in the
system is the possibility to access their content. For this
purpose the original ISA has been modified (in our case
we chose x86 for familiarity reasons), adding an instruction
to explicitly allocate a range of physical addresses onto the
scratchpad memory. In order to simplify this allocation, the
physical range chosen starts after the main memory range. This
way, in order to integrate more than one scratchpad memory
in the system, the next SPM’s range starts right after the
scratchpad memory instantiated before, i.e:

range(SPM1) =[|main memory|, |main memory|+ |SPM1|]
range(SPMi) =[last addr(SPMi−1) + 1,

last addr(SPMi−1) + |SPMi|+ 1]

∀i >1

Thus, this instruction maps dynamically the region given,
returning a reference in the program. This instruction has been
generalized, allowing the reservation of memory in different
scratchpad memories.

IV. MATHEMATICAL MODEL

Given that the proposed architecture integrates pro-
grammable memories, it is necessary to decide where to
allocate a specific variable of a program. In other words,
decide whether a variable should reside into main memory

and be accessed through a regular cache, or whether it should
be copied to one of the available scratchpad memories.

We propose a linear programming system that minimizes a
target function to control memory allocation. One advantage
of this approach is the possibility to change the objective
function easily to target performance and even add or remove
restrictions to model total power limitations, memory sizes,
or other types of QoS. In the scope of this paper, the target
function is the dynamic energy (EDYN ), calculated as the
addition of the energies of each individual access, either
read or write, multiplied by the energy consumption factor
of each memory (i.e. the dynamic energy consumed by each
read or write) and a binary decision variable. The introduced
restrictions are: (i) a variable can only be allocated to a single
memory, and (ii) the total size of the variables allocated to
a scratchpad memory must be less or equal to the size of
such memory. The size of each variable depends on the type
of the variable (e.g. double, integer, etc.) and the number of
elements in case of a k-dimensional vector. This proposal is
captured in the equations in Figure 3, where |ψ| is the size
of the variable ψ, |SPMi| is the size of SPMi, fi(ψ) refers
to the energetic cost of accessing scratchpad i for variable ψ,
and analogously h(ψ) refers to the energetic cost of accessing
main memory. Nr and Nw refer to the number of reads and
writes respectively.

ψ ∈ Ψ ≡ set of variables

min EDYN =
∑
ψ∈Ψ

(
M(ψ)h(ψ) +

n∑
i=1

Si(ψ)fi(ψ)
)

Si(ψ) =

{
0 ψ in SPMi

1 ψ not in SPMi

M(ψ) =

{
0 ψ in main memory
1 ψ not in main memory

M(ψ) +

n∑
i=1

Si(ψ) = 1; ∀ψ ∈ Ψ∑
ψ∈Ψ

Si(ψ)|ψ| ≤ |SPMi|,∀i ∈ [1, n]

where
|ψ| = type(ψ) ∗Nψ

fi(ψ) =
∑
ψ∈Ψ

ESPM r(i)Nr(ψ) + ESPM w(i)Nw(ψ)

h(ψ) =
∑
ψ∈Ψ

EMM rNr(ψ) + EMM wNw(ψ)

Fig. 3. Linear programming system

Since energy savings from using scratchpad memories come
from the reduction of accesses to main memory, the proposed
system would recommend allocating the variables that fit into
the scratchpad memory. This can be detrimental in some cases,
e.g., if an LRU cache could take advantage efficiently of the
locality present in the pattern of accesses of a given variable
(cache-friendly access). Hence, we decided to introduce a new



4

restriction: force a particular variable to be allocated to main
memory if the code accesses it in a cache-friendly way. This
restriction is reflected in Equation (1).

C(ψ) =

{
0 ψ not cache-friendly
1 ψ cache-friendly

M(ψ) ≥ C(ψ) ∀ψ ∈ Ψ

(1)

The value of this binary variable allows to introduce external
information, e.g., data obtained by profiling or analyzing data
at compile time. In our current system, the value of this
variable is determined in a very simple analytical way: a
regular access to a variable is considered cache-friendly if
two consecutive accesses to a k-dimensional array (k > 1)
in a loop nest may reside in the same cache line.

As a corollary, the following expressions are exposed and
commented briefly:

A[i, j] ≡ regular, cache-friendly access
A[i, B[j]] ≡ irregular access, considered non cache-friendly
A[i, j ∗ 8] ≡ regular, but not necessarily cache-friendly access

In the last case the cache-friendliness of the access depends
on the data type and cache line size. For instance, working with
8-byte double values and 64-byte cache lines two consecutive
accesses would never reside in the same cache block. In the
general case:

∃ai / addr(ai+1)− addr(ai) ≤ |cb| (2)

Where ai and ai+1 are two consecutive accesses, addr(x)
is the address of x and |cb| is the cache line size. With the
above, we have developed a prototype of this integer linear
programming system in R. We currently do not consider tem-
poral locality between different accesses to the same variable.

V. EXPERIMENTAL RESULTS

A. Configuration

Besides implementing the architecture proposed in the sim-
ulator, it is important to test its performance and compare
it with other architectural alternatives. For this purpose, we
have chosen the PolyBench/C suite [16]. The main advantages
of this suite are its open source license and having simple
kernels to analyze for our model, i.e., nested loops with affine
accesses, making it simple to calculate the number of reads
and writes of each variable.

Another important aspect in order to perform a correct
configuration of our architecture is the selection of the char-
acteristics of our memory modules, i.e., energy consumption
and latencies. For this purpose we have used CACTI [17]
and NVSim [18]. Actually, NVSim is a CACTI extension,
since it works using this tool, but adding other features and
technologies. These tools have been used to validate the
configurations of our architectures.

We have tested our proposal using two different archi-
tectures: a general purpose one, and a modified architecture
including scratchpad memories. The general purpose architec-
ture consists of an x86 processor and a traditional memory

hierarchy: two cache levels and a main memory (see Figure
1). Regarding the modified architecture (see Figure 2), the
most remarkable detail of the configuration is the inclusion of
a scratchpad memory between the CPU and main memory, as
explained before. In order to perform meaningful comparisons,
this scratchpad memory replaces the last-level cache memory
in the traditional memory hierarchy. This is an area equivalent
replacement, in other words, the L2 cache, is replaced with
a scratchpad memory which occupies roughly the same die
area. As a proof of concept of our system we explore, besides
SRAM, the usage of STT-RAM memories, providing better
energy consumption and capacity characteristics. Table II
summarizes the different memory configurations used in our
tests, including the energy consumed for both read and write
accesses and also the leakage power of each module. Note the
huge difference in the leakage power of both technologies.
STT-RAM also has a higher density, increasing the size of
the memory modules by a factor of approximately four;
however in detriment of the access latencies. The results of
this experiment exemplify the energetic and temporal trade-
off in the technological selection.

B. Results

Throughout this experiment we have talked about different
features: area, latencies and energy, mostly. In the section
above we talked about the different configurations of the
memory hierarchy, also referring to the different technologies.
Nevertheless, the theoretical premises may not be reflected in
the execution of the benchmarks.

In order to measure the execution time of the programs,
we set breakpoints at the interest regions, focusing on the
kernel of the program (the SCoPs [19] in PolyBench codes).
Thus gem5 gives us statistics about the execution time and
energy consumed by the memory hierarchy. In order to obtain
homogeneous results, we have used gem5 to obtain the number
of references to SPM, both reads and writes, as well as the
execution time of the kernel of the program. With this data
it is possible to calculate the dynamic energy consumed by
scratchpad memories (see Equation 4 below). Nevertheless,
energetic results given by gem5 are quite scarce regarding
memories, and in order to obtain more detailed results, we
have used McPAT [20]. For this purpose we have developed
a novel parser (gem5McPATparse [21]) that searches the
output files of gem5 for the parameters and statistics that
serve as input for McPAT, and translates them generating the
corresponding XML input file. These translations are based
on [22]. In this way, the energy consumed by cache memories
is calculated as the addition of the dynamic power and leakage
power multiplied by the execution time (see Equation 5).

Finally, static energy is calculated using the architectural
parameters provided by NVSim and the execution time of
a particular program (see Equation 3). The addition of all
equations is reflected in Equation 6.

ESTATIC(t) = texec ∗ Pleakage (3)

ESPM = Nr ∗ ESPM r +Nw ∗ ESPM w (4)



5

TABLE II
COMPARISON OF DIFFERENT TECHNOLOGIES. EACH ROW CORRESPONDS TO A CERTAIN CACHE OR SCRATCHPAD MEMORY CONFIGURATION.

SRAM (caches)
cache mm2 Latencies (ns) Energies

kB Read Miss Write Hit/miss (pJ) Write (pJ) Leak (mW)
256 0.229 2.258 0.083 1.588 72 25 336.330
512 0.380 2.669 0.107 1.996 112 21 600.112

1024 0.741 3.452 0.144 2.773 214 36 1180.407
2048 1.343 9.989 0.149 7.941 378 24 2141.436
4096 2.619 11.52 0.222 9.037 383 290 4288.790

STT-RAM (scratchpads)
SPM mm2 Latencies (ns) Energies

kB Read Miss Write Read (pJ) Write (pJ) Leak (mW)
1024 0.183 2.221 N.A. 5.686 195.251 205.024 84.809
2048 0.348 2.364 N.A. 5.744 228.512 242.614 146.194
4096 0.696 2.499 N.A. 5.812 276.137 290.231 292.389
8192 1.311 3.055 N.A. 6.038 388.324 383.871 568.592

16384 2.488 5.036 N.A. 7.739 516.687 465.678 640.935

Pcache = Pcache LEAK + Pcache DY N

EDYNcache = Pcache ∗ texec
EDYN (t) = EMM + EDYNcache + ESPM

(5)

ETOT (t) = ESTATIC(t) + EDYN (t) (6)

Each execution was performed on an Intel Xeon E5-2660
Sandy Bridge 2.20 Ghz node, with 64 GB of RAM. All
the results have been normalized with respect to the results
obtained for cache_256kB, which corresponds to the first
row of Table II. The most remarkable aspects observed in these
executions are commented in the following paragraphs.

Regarding temporal performance, scratchpad architectures
present worse results with small matrix sizes, in other words,
with a small working set. The explanation for this issue is the
fact that the decision system forces arrays with non cache-
friendly accesses to be allocated to scratchpad memory. As
a consequence, for small working sets where L1 cache could
allocate this data without damaging locality the scratchpad
memory increases latencies and dynamic energy consumed.
The reason is that the SPM has been designed as a replacement
for L2, but it bypasses L1 in these situations. Nevertheless,
when the size of these arrays increases, the decision system
plays a major role since the L1 cache can no longer allocate
all the desired data, provoking conflicts when accessing new
elements. In these cases, using scratchpad memories mitigates
cache memory penalties caused by non cache-friendly accesses
and capacity issues. This can be observed in Figure 4 for the
2mm benchmark. Still, there are also cases where this behavior
is missing, as shown in Figure 5 for the bicg code. In this
case, the decision system does not provide any performance
enhancement since the data set works properly through cache
memory, and losing the last-level cache is counterproductive.
Analyzing the output of the decision system for the bench-
marks whose performance worsens with working set size, we
conclude that the reason for this is that some of the arrays
which should be allocated to SPM from a locality point of
view do not fit the available SPM space. Future versions of
the decision system need to incorporate tiling transformations,

Fig. 4. Normalized execution time of the 2mm benchmark

Fig. 5. Normalized execution time of the bicg benchmark

or some means to store large arrays in a piecewise fashion into
the SPM so that locality can be exploited in these cases.

Following a similar pattern to temporal performance, the
dynamic energy in architectures with scratchpads is higher
for small working sets, since the L1 cache has lower dynamic
energy per access and no capacity issues arise. Similarly, when
increasing the size of arrays, architectures without a scratchpad
memory issue more accesses to main memory, raising the
dynamic energy consumed (see Figures 7 and 8). Nonetheless,



6

Fig. 6. Correlation between execution time and dynamic energy for all
benchmarks

it is also remarkable what we can observe in bicg: there is
no performance improvement and the dynamic energy is also
significantly higher. The increase in dynamic energy is caused
by the same issues identified when analyzing performance.
In fact, the correlation between execution time and dynamic
energy is extremely high in all cases, as illustrated in Figure 6.

Fig. 7. Normalized dynamic energy of the 2mm benchmark

Fig. 8. Normalized dynamic energy of the bicg benchmark

Regarding static energy, as expected, despite temporal
differences, in general scratchpad memories have a lower static
consumption due to the technology chosen (STT-RAM against
SRAM). This situation can be observed in Figures 9 and 10.

Fig. 9. Normalized static energy of the 2mm benchmark

Fig. 10. Normalized static energy of the bicg benchmark

The executions for the remaining benchmarks are illustrated
in Figure 11. It is readily observable the repetition of the
patterns commented before in the rest of the benchmarks.

VI. DISCUSSION

The imperious requirement to use efficiently the available
resources in our system presents interesting challenges. In
this article general purpose architectures using different mem-
ory hierarchies are analyzed. For this purpose well-known
modeling and simulation tools have been used in order to
demonstrate the reliability of the results. A linear programming
system to decide to which available module a certain variable
of the program must be allocated in order to improve energy
consumption has been developed. We have compared cache
and RAM memories equivalent in terms of area, using SRAM
and STT-RAM technologies, respectively. Experimental results
demonstrate that: (i) without a remarkable penalty in time,
energy efficiency can be improved, mostly due to low leakage
power in scratchpad memories using STT-RAM; (ii) the use
of scratchpad memories with a simple decision algorithm can
also improve temporal performance for certain benchmarks;
(iii) there are some cases where the algorithm does not choose
properly the location of variables, but this behavior is easily
correctable considering the size of the L1 cache; and (iv) as
the size of the working set grows, the energy improvements
are more evident due to, in some cases, the success of the
decider choosing the most profitable location for a variable,
but mostly due to the weighing of leakage power.



7

Fig. 11. Results of all executions

VII. ACKNOWLEDGEMENTS

This work is supported by the Ministry of Economy and
Competitiveness of Spain and FEDER funds of the EU (Project
TIN2013-42148-P).

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, New York, NY, USA, 2011, pp. 365–376. [Online].
Available: http://doi.acm.org/10.1145/2000064.2000108

[2] L. Yan, L. Dongsheng, Z. Duoli, D. Gaoming, W. Jian, G. Minglun,
W. Haihua, and G. Luofeng, “Performance evaluation of the memory
hierarchy design on CMP prototype using FPGA,” in IEEE 8th Inter-
national Conference on ASIC, Oct 2009, pp. 813–816.

[3] Vivy Suhendra, Chandrashekar Raghavan, Tulika Mitra, “Integrated
Scratchpad Memory Optimization and Task Scheduling for MPSoC
Architecture,” School of computing. National University of Singapore,
2006.

[4] B. Anuradha and C. Vivekanandan, “Usage of scratchpad memory in
embedded systems 2014; state of art,” in Third International Conference
on Computing Communication Networking Technologies (ICCCNT),
July 2012, pp. 1–5.

[5] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in cell’s multicore architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10–24, March 2006.

[6] Barcelona Supercomputing Center (BSC), “Cell Superscalar (CellSs)
User’s Manual,” http://www.bsc.es/media/2296.pdf, 2009.

[7] M. Takayama and R. Sakai, “Parallelization Strategy for CELL TV,”
in 1st Workshop on Applications for Multi and Many Core Processors,
2010.

[8] T. M. Conte, Computer Architecture: A Quantitative Approach. Appendix
E: Embedded Systems, 5th ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[9] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “Soda: A low-power architecture for software radio,”
SIGARCH Comput. Archit. News, vol. 34, no. 2, pp. 89–101, May 2006.

[10] A. Sodani, “Intel R© Xeon PhiTM Processor ”Knights Landing”
Architectural Overview,” https://www.nersc.gov/assets/Uploads/
KNL-ISC-2015-Workshop-Keynote.pdf, 2015.



8

[11] IBM, “IBM 6X86MX Microprocessor,” http://datasheets.chipdb.org/
IBM/x86/6x86MX/mx full.pdf, 1998.

[12] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of gem5 simulator system,” in 7th International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoC), July 2012,
pp. 1–7.

[13] A. Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C. Sudanthi,
C. Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), March 2014,
pp. 13–22.

[14] R. Banakar, S. Steinke, L. Bo-Sik, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: Design alternative for cache on-chip memory in
embedded systems.” In Proceedings of the 10th International Symposium
on Hardware/Software Codesign, pp. 73–78, 2002.

[15] G. Rodrı́guez, J. Touriño, and M. T. Kandemir, “Volatile STT-RAM
Scratchpad Design and Data Allocation for Low Energy,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 38:1–38:26, Dec. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2669556

[16] L. Pouchet, “PolyBench/C: the Polyhedral Benchmark suite,” http://web.
cse.ohio-state.edu/∼pouchet/software/polybench/, 2015.

[17] S. J. E. Wilton and N. P. Jouppi, “CACTI: an enhanced cache access
and cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 5, pp. 677–688, May 1996.

[18] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 7, pp. 994–1007, July 2012.

[19] A. Kumar and S. Pop, “SCoP Detection: A Fast Algorithm for Industrial
Compilers,” in 6th International Workshop on Polyhedral Compilation
Techniques on IMPACT, January 2016.

[20] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 42), 2009, pp. 469–480.

[21] M. Horro, “gem5McPATparse,” https://github.com/markoshorro/
gem5McPATparse, 2016.

[22] F. Endo, “Online Auto-Tuning for Performance and Energy
through Micro-Architecture Dependent Code Generation,” Theses,
Université Grenoble Alpes, Sep. 2015. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01285964


