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Abstract. In the multi-core CPU world, transactional memory (TM)
has emerged as an alternative to lock-based programming for thread
synchronization. Recent research proposes the use of TM in GPU ar-
chitectures, where a high number of computing threads, organized in
SIMT fashion, requires an effective synchronization method. In contrast
to CPUs, GPUs offer two memory spaces: global memory and local mem-
ory. The local memory space serves as a shared scratch-pad for a subset
of the computing threads, and it is used by programmers to speed-up
their applications thanks to its low latency. Prior work from the authors
proposed a lightweight hardware TM (HTM) support based in the local
memory, modifying the SIMT execution model and adding a conflict de-
tection mechanism. An efficient implementation of these features is key
in order to provide an effective synchronization mechanism at the local
memory level.

After a quick description of the main features of our HTM design for
GPU local memory, in this work we gather together a number of pro-
posals designed with the aim of improving those mechanisms with high
impact on performance. Firstly, the SIMT execution model is modified
to increase the parallelism of the application when transactions must be
serialized in order to make forward progress. Secondly, the conflict de-
tection mechanism is optimized depending on application characteristics,
such us the read/write sets, the probability of conflict between transac-
tions and the existence of read-only transactions. As these features can
be present in hardware simultaneously, it is a task of the compiler and
runtime to determine which ones are more important for a given applica-
tion. This work includes a discussion on the analysis to be done in order
to choose the best configuration solution.
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1 Introduction

Transactional Memory (TM) [10] has emerged as a promising alternative to
locking mechanisms to coordinate concurrent threads. TM provides the concept
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of a transaction to wrap a critical section. A transaction enforces atomicity and
isolation during the execution of a critical section. Transactions are allowed to
run concurrently, tracking all memory accesses into a read-set and a write-set. If
two concurrent transactions conflict (i.e., they access the same memory position
and, at least, one of the accesses is a write), one of them must abort, restoring
its initial state and retrying its execution. When a transaction concludes its
execution without conflicts, it commits, making definitive its changes in memory.
Many TM systems have been proposed in the last two decades for multi-core
CPU architectures [9].

Graphics Processing Units (GPUs) have been widely adopted as hardware
accelerators for data-parallel applications. In contrast to CPUs, GPUs are orga-
nized as a set of highly multi-threaded SIMT cores. Using OpenCL [12] terminol-
ogy, a SIMT core is referred to as a Compute Unit (CU). Computing threads are
called work-items, and are grouped into work-groups, that are scheduled to run
on the CUs. In addition, work-items have access to two different memory spaces.
The global memory space, located off-chip, is addressable by all the work-items
running on the GPU, and provides high capacity, though with high latency. The
local memory space is located on-chip inside each CU, featuring small capacity,
but also lower latency (as compared to global memory). Local memory is shared
by work-items belonging to the same work-group and is used by programmers
as scratch-pad to speedup their applications.

Applications resort to explicit synchronization to avoid races when access-
ing shared data. Supporting efficient mutual exclusion using traditional lock-
based implementations in a SIMT architecture poses a challenge. The left side
of Figure 1 shows an implementation of a coarse-grained lock in the SIMT pro-
gramming model, which can become much more complicated when adopting fine-
grained locks. To alleviate the burden of lock-based programming and to improve
program performance, the use of TM has been proposed for GPU architectures
both in software [2,15,11] and hardware [8,7,14]. In order to implement TM on
the scratch-pad memory, previous work [14] proposed modifications to the SIMT
execution model and a novel conflict detection mechanism based in signatures.
Firstly, the SIMT execution model allows for running transactions concurrently
and to restart the conflicting ones. According to this model, transactions run
in lockstep and retrying conflicting transactions may result in a deadlock. To
avoid this situation and ensure forward progress, a serialization mechanism is

1 bool done = false;
2 while (!done){

3 if (getLock()){ 1 TX_Begin();

4 //Critical Section 2 //Critical Section
5 done = true; 3 TX_Commit () ;

6 releaseLock ();}

73y

Fig. 1. Coarse-grained lock implementation in the SIMT programming model (left)
and the required transformation for the use of TM (right).
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proposed. If this mechanism is required very often it may harm performance. Sec-
ondly, the conflict detection mechanism is based on unified read-write signatures
(i.e., a single signature to represent both the read-set and write-set). This design
decision, despite its simplicity, has some disadvantages. For instance, signatures
may introduce false positives which, in some cases, results in the unnecessary re-
execution of transactions. In addition, for applications where the read-set differs
from the write-set we may find better performance using dedicated signatures
for each set instead of using a unified signature.

In this paper, we analyze in detail the aforementioned SIMT execution mode
and conflict detection mechanism from previous work on TM for GPU local mem-
ory. In addition, we compile different proposals for improving both implementa-
tions. During the evaluation of these proposals, we highlight the characteristics
of the applications that allows for achieving better performance. These proposals
are built in incrementally, which means that they can coexist implemented in
hardware, but those that are not efficient for a given application can be deac-
tivated via software or the compiler. In order to help the compiler and runtime
design, we provide a discussion on the TM features that should be enabled for
a given application with the objective of improving performance.

2 Background

2.1 GPU-LocalTM

GPU-LocalTM [14] is a hardware TM for GPU architectures that allows for ex-
plicit synchronization of work-items through local memory using transactions.
GPU-LocalTM is designed on top of an AMD’s Southern Islands GPU and eval-
uated using the Multi2Sim 4.2 [13] simulation framework. The Southern Islands’
ISA is extended with two new instructions that mark the boundaries of the
transaction: TX Begin and TX_Commit. Local memory operations performed
within both instructions are considered transactional. Conflicts are detected as
soon as the memory access is performed (eager conflict detection). A successful
write access performs a back-up of the old value, which has to be restored in case
a conflict is detected and the transaction aborts (eager version management).
GPU-LocalTM follows a requester loses policy (i.e., the work-item who detects
the conflict aborts its own execution). In order to store the old and speculative
values, GPU-LocalTM uses existing memory resources. Specifically, in each local
memory bank, memory is allocated to store the backed-up value and the work-
item identifier for each local memory variable. The memory allocated for this
purpose is called shadow memory. We discuss the transactional SIMT execution
model and the conflict detection mechanism proposed in GPU-LocalTM, as they
are relevant for the purposes of this paper.

Transactional SIMT execution model. The Southern Islands’ SIMT exe-
cution model is based the existence of execution masks managed by hardware
and compiler. These masks, available per wavefront, are 64-bit width as there
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are 64 work-items per wavefront in the current architecture. The execution mask
(EXEC) indicates, the work-items that are running (those whose bits are set
to 1) or disabled (those whose bits are set to 0). The vector comparison mask
(VCCQ), stores the results of comparison operations, with a behavior similar to a
“vectorized” Z flag. GPU-LocalTM adds the Transaction Conflict Mask (TCM),
completely managed by hardware, to determine which work-items have a conflict
when running a transaction. If a work-item detects a conflict, its corresponding
bit in TCM is set to 1. The work-item remains inactive for the rest of the trans-
action. Once the transaction reaches the TX_Commit instruction, work-items
whose bit in TCM is set to 1 (i.e., have detected a conflict during the trans-
action) must restart the execution from the TX Begin instruction. Work-items
that successfully completed the transaction must wait until the whole wavefront
has finished the execution.

As they execute in lockstep, two work-items within the same wavefront may
be conflicting after each retry. This deadlock situation can be detected if, after
two consecutive retries, the same TCM bits are active. To solve this situation
and ensure forward progress, GPU-LocalTM triggers the wavefront serialization
mode. In this case, a single work-item within the wavefront is chosen to re-
execute the transaction while the remaining ones wait for the next retry. This is
done by changing only one of the bits in TCM from 1 to 0 when the transaction
retries. The policy implemented by GPU-LocalTM is to choose the work-item
with lower identifier among the conflicting ones. This mechanism ensures that
the work-item selected for execution does not conflict with any other work-items
within the wavefront. Table 1 shows an example of the execution of a transaction
that requires the use of the wavefront serialization mode.

If, after executing in wavefront serialization mode, the TCM mask still re-
mains the same at the end of the transaction it means that the deadlock is
produced by actions of another wavefront. In this case, the work-group serial-
ization mode is triggered: the wavefront that detected the deadlock restarts in
the wavefront serialization mode and the remaining wavefronts within the work-
group must self-abort the ongoing transactions and quiesce in the TX_Begin
instruction until the running one finishes its execution.

Conflict detection mechanism. The conflict detection mechanism proposed
in GPU-LocalTM is distributed per memory bank and makes use of signa-
tures [1]. A shared signature is used to represent both read-set and write-set for
each work-item. The Southern Islands architecture features 32 memory banks for
local memory. Non-coalesced memory accesses are serialized by a coalescing unit,
which ensures that a bank is accessed by a single work-item at a given time. When
accessing local memory within the boundaries of a transaction, GPU-LocalTM
triggers the conflict detection mechanism in parallel in each memory bank, which
works in 3 phases:

1. Fast conflict detection: in each bank, we determine in parallel if the access to
memory causes a conflict with a previous access to the same memory bank.
We use signatures, which can cause false positives.
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Instruction [EXEC[TCM[TCM OLD[Mode [Comments

TX_Begin 1111 {0000 |- TX Transaction starts

Memory Access|1111 |1100 |- TX Conflict detected between work-
items 0 and 1

TX_Commit 1111 {1100 |- TX Transaction finished. Work-
items 2 and 3 successfully
commit.

TX_Begin 1100 |0000 [1100 X Transaction retries for work-
items 0 and 1

Memory Access|1100 |1100 {1100 TX Conflict detected between work-
items 0 and 1

TX_Commit 1100 |1100 |1100 X Transaction finished. Deadlock
detected.

TX_Begin 1100 (0100 1100 WF Serial|Transaction retries for work-
items 0. Work-item 1 remains
inactive.

Memory Access|1100 [0100 {1100 WF Serial|Only work-item 0 accesses to
memory.

TX_Commit 1100 (0100 {1100 WF Serial| Transaction finished. Return to
TX mode.

TX_Begin 0100 [0000 [0100 TX Transaction retries for work-
item 1

Memory Access|0100 |0000 {0100 X No conflicts detected

TX_Commit 0100 {0000 [0100 TX Transaction finished for every
work-item.

Table 1. Example of the execution model considering 4 work-items. Double lines
separate different transaction retries.

2. Ownership detection: as signatures can return false positives, we use this
phase to differentiate between a second access to the same memory location
(true positive) from a new access to memory (false positive). This phase is
required when the work-item currently accessing to the memory bank is the
only one returning a positive in the signatures.

3. Conflict broadcast: this phase serves to broadcast conflict information from
different memory banks and update transactional metadata.

Note that, as the fast conflict detection is performed in parallel, two (or more)
work-items might abort each other unnecessarily. Suppose addresses A and B
are located in different memory banks. If work-item 0 accesses A and work-item
1 accesses B, they update the corresponding signatures to register that access.
If, later in the program, work-item 0 accesses B and work-item 1 accesses A,
both conflicts are detected in parallel, aborting the execution of both A and
B. In addition, having an unified shared signature to represent both read-set
and write-set presents some issues. Applications that perform read-modify-write
operations on a set of memory positions may benefit from an unified signature
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and detecting conflict during read operations. For instance, suppose a work-
item reads A, performs some operations, and then write the results back to A.
Detecting the conflict during the write operation results in a waste of time and
computational resources. Detecting conflicts during the read operations results
in an early conflict detection, reducing the amount of wasted work. On the
contrary, if the application reads and writes different memory positions, detecting
a conflict during the read operation may result in an unnecessary abort of the
application. Suppose work-item 0 reads A and writes B, while work-item 1 reads
A and writes C. As both transactions write different memory positions, no real
conflict happens. Detecting conflicts during the read operation using a shared
signature may result in a conflict and the re-execution of one of the transaction.
If conflicts are detected only during write operations, then no conflict happens
and both transactions are allowed to finish in parallel.

Version Management For version management, GPU-LocalTM allocates a
region of local memory called shadow memory. Write accesses update this re-
gion of memory. A non-conflicting write access performs a backup of the original
value and sets the current work-item as owner for this memory position. New
(speculative) values are written directly to their final memory locations. Con-
flicting work-items use this information to discard the speculative values and
restore the old ones.

3 Improving the serialization mechanism

The wavefront serialization mode implemented in GPU-LocalTM selects a single
work-item within the wavefront for execution. Specifically, whenever two consec-
utive retries of the transaction finish with the same TCM mask, the work-item
with lower identifier is the one selected to retry in wavefront serialization mode.
This choice has two important consequences.

The first consequence is that by choosing only one work-item for re-execution
may not be optimal and multiple work-items could be selected at the same time.
We can think of an execution with 4 work-items: A, B, C, and D. These work-
items can conflict in pairs (A and B conflict mutually, while C and D also conflict
mutually), but with no other work-item within the wavefront. This situation can
create a deadlock and trigger the wavefront serialization mode, where only one
work-item is selected for execution. However, as work-items conflict in pairs, we
can select both A and C (or B and D) for execution during the serialization
mode. We refer to choosing only one work-item as single work-item selection,
while selecting two or more work-items is called multiple selection.

The second consequence of choosing for re-execution the work-item with lower
identifier can affect performance in some cases. Depending on the memory ac-
cess pattern, and due to the requester loses policy, a work-item may cause many
others to conflict. In some scenarios, the first work-item within the wavefront
causes many others to conflict. In this case, in order to avoid future conflicts,
it makes sense to select it to execute in the first place if the wavefront requires
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the use of the serialization mode. This way, it will finish its transaction in serial-
ization mode and will no cause other work-items to conflict when the wavefront
returns to transactional mode. However, if the last work-item within the wave-
front is the one causing most of the conflicts, starting by choosing work-items
with lower identifiers for re-execution will keep this work-item conflicting with
others for a long period of time. In this case, the serialization mode is more
effective if it chooses the work-item with higher identifier. In order to explore
the different options, we create the ascending and descending mechanisms which
select the work-item with lower identifier and higher identifier when entering the
serialization mode, respectively.

The descending mechanism can be implemented as described in GPU-LocalTM,
but processing the TCM mask backwards. The mechanism selecting multiple
work-items per wavefront for re-execution after detecting a deadlock requires
changes in the conflict detection mechanism and the SIMT execution model
proposed by GPU-LocalTM. In addition to the EXEC and TCM masks used by
GPU-LocalTM we propose the use of a new mask to keep track of the conflict
pattern. We call this mask Multiple Conflict Mask (MCM). In the evaluated
architecture, MCM keeps one bit per work-item within the wavefront (this is,
a 64-bit mask). If the bit corresponding to a given work-item is set to 1, it
means that is a candidate for re-execution in the next retry when running the
serialization mechanism. If, otherwise, the value of its bit is 0 it means that the
work-item is not chosen for re-execution. Initially, when a transaction starts (or
restarts its execution), every bit in MCM is set to 1 (i.e., initially, every work-item
is a candidate to re-execute if it finds any conflict). The update of this mask is
done during the conflict detection mechanism. At the end of the transaction, the
SIMT execution model must use the information stored in MCM to select which
work-items re-execute. Combining the order (ascending or descending) and the
choice of work-items (single or multiple) we obtain 4 configurations of the serial-
ization mechanism (ascending-single, descending-single, ascending-multiple, and
descending-multiple)

3.1 Conflict Detection Mechanism

GPU-LocalTM implements a distributed per-bank conflict detection mechanism
which executes in three stages. The first stage, fast conflict detection, detects
conflicts and updates TCM. The second stage, ownership detection, discrimi-
nates self-conflicting memory accesses from new ones. The third stage, conflict
broadcast, propagates conflict information among the banks in order to clear
transactional metadata.

Implementing a conflict detection mechanism that allows the execution of
multiple work-items when entering the serialization mechanism requires modifi-
cations on the fast conflict detection stage. When a work-item detects a conflict,
it compares its own identifier against the identifier of the owner of the memory
position that is being accessed. We can get this information from the ownership
records stored in the shadow area allocated by GPU-LocalTM. The MCM is
updated with this information depending on the election of the ascending or
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descending mechanism. Conflicts with work-items in different wavefronts always
set the current work-item as candidate for re-execution, leaving its bit in MCM
with the default value of 1. When the ascending algorithm is enabled, work-items
with lower identifier have priority over those with higher identifier. Thus, if the
conflict is detected with a work-item with higher identifier, the work-item will
set itself as candidate for for re-execution and will leave its bit in MCM with
the default value of 1. Otherwise, if the identifier of the conflicting work-item
is lower, the current work-item will write a value of 0 in its corresponding bit
in MCM. The opposite happens when the descending algorithm is enabled. As
work-items with higher identifier have higher priority, a work-item updates its
corresponding MCM bit to 0 if the conflict is detected with a work-item with
higher identifier. Otherwise, its bit in MCM will remain set to the default value
of 1.

In summary, MCM contains 1 for work-items that potentially can execute in
the next iteration or 0 otherwise.

3.2 SIMT execution mode

GPU-LocalTM modifies the SIMT execution model of the Southern Islands ar-
chitecture to allow for the correct execution of transactions. The TX _Begin in-
struction starts the transaction and decides whether the serialization mode is
required or not. The first time TX_Begin instruction executes, the transactional
mode starts. If there is a conflict, TMC is updated with information on the
work-items that conflicted. In that case, the TX_Commit instruction decides to
restart the transaction for those work-items. If two consecutive transactions re-
tries finish with the same value in TMC it means that the transaction is stuck
in a deadlock. In this case, the TX_Begin starts the transaction in wavefront
serialization mode.

When the wavefront serialization mode is required, we use MCM to choose
a subset of the conflicting work-items for re-execution. As the wavefront seri-
alization mode is active after, at least, one transaction retry, MCM is already
updated with information on the conflicts. In the descending algorithm, a bit is
set to 0 in MCM if its corresponding work-item had a conflict with a work-item
that belongs to the same wavefront but with lower (or higher, in case of the
descending algorithm) identifier. Those work-items with its bit set to 1 in MCM
are candidates to execute the transaction in the next retry. In order to activate
these work-items we perform the operation TCM = TCM & ~ MCM. Note that
a 0 in TCM means that the work-item has no conflict and, thus, is active for
execution in the next retry.

During the wavefront serialization mode, new conflicts may appear due to
aliases in the signatures or changes in memory by other wavefronts. If a conflict
is detected when executing multiple work-items during serialization, then the
work-group serialization mode is active and only one work-item is selected for
re-execution.
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4 TImproving conflict detection

In our initial design [14], an unified signature is used to record both reads and
writes accesses. Unified signatures are private per work-item and per bank (i.e.,
there are 256 Bloom filters per bank). Since there are a large number of sig-
natures, 8-bit Bloom filters are used to limit the amount of memory resources
needed. We name this conflict detection mechanism as Private Read/Write Sig-
nature Conflict Detection (pRW-sig).

By using private unified read-write signatures in our pRW-sig implementa-
tion, we provide GPU-LocalTM with an efficient and low-cost mechanism for
conflict detection. However, as the same signature is used to register reads and
writes, it results in false read-read conflicts. In order to avoid these conflicts,
Choi et al. [5] propose the use of smaller, per-transaction, helper signatures to
represent the write set. Memory reads are registered only in the unified sig-
nature, while memory writes are registered in both the unified and the helper
signatures. A conflict is detected during a memory read operation if both the
unified and helper signatures return a positive. A false read-read conflict would
return a positive in the unified signature, but not in the helper signature. This
allows us to filter out read-read conflicts, which provides a more precise conflict
detection mechanism. A property of helper signatures is that they are meant to
be smaller than the unified signatures (otherwise, using separate read and write
signatures would be more efficient). As 8-bit unified signatures are small enough,
we propose the use of a shared per-wavefront 32-bit helper signatures to record
writes. We name this solution Shared Write-Only Signature Conflict Detection
(sWO-sig).

These two mechanisms use signatures to detect conflicts, considering read-
read interactions as conflicts (pRW-sig) or not (sWO-sig). Signatures are used
as an efficient method to detect conflicts, as they are evaluated quickly. How-
ever, its use may introduce false conflicts as their evaluation may produce false
positives. To complement these two conflict detection mechanisms we propose
the use of a directory, which does not return any false positive. This directory
is mapped in the local memory portion allocated by GPU-LocalTM to back-up
speculative memory values. This results in a more precise but slower conflict
detection mechanism, as the access latency to local memory is higher than the
latency of evaluating signatures but returns no false positives. The Directory-
based Conflict Detection (DCD) mechanism uses these speculative values to
detect conflicts. This method is equivalent to pPRW-sig in the sense that it con-
sider read-read accesses as conflicts. By adding shared and modified bits to each
directory entry (S and M) we can differentiate read-read conflicts and, thus, al-
low concurrent read accesses to memory without conflicts. Initially, both S and
M are 0. When accessing a memory location for the first time, the version man-
agement mechanism sets the accessing work-item as owner in shadow memory.
A read access for different work-items are allowed as long as M is disabled, and
they enable the S bit. A write access is allowed only if the owner is the current
work-item and the S is disabled; otherwise is considered as conflict. A success-
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read-read conflicts|no read-read conflicts
False positives (signatures) pRW-sig sWO-sig
No false positives (directory) DCD SMDCD

Table 2. Classification of the conflict detection mechanisms.

ful write will set the bit M as enabled. This solution is called Shared-Modified
Directory-based Conflict Detection (SMDCD).

Table 2 classifies the conflict detection mechanism proposed for GPU-LocalTM.
Note that the conflict detection mechanism is designed to be coupled with the
modifications made to the SIMT execution model to ensure forward progress.
The SIMT execution model is modified to allow execution of a single or multiple
work-items within the whole work-group in the case a deadlock is detected. In
addition, these conflict detection mechanisms can coexist implemented in hard-
ware and enabled or disabled depending on the characteristics of the applications
to execute.

5 Modeling

The designs described in sections 3 and 4 can coexist in hardware and occupy a
different amount of hardware resources. Table 3 contains the hardware resources
available per CU in the AMD’s Southern Islands GPU, and those required by
the original design of GPU-LocalTM when running a work-group (composed of
four wavefronts).

In order to implement the multiple serialization mechanism (i.e., ascending-
multiple and descending-multiple) we require storage for the novel MCM mask.
As these mask are located per wavefront we can map them in scalar registers
which can be accessed by each wavefront. For work-groups with four wavefronts
we need to store four 64-bit masks, resulting in the use of eight scalar regis-
ters. No other memory resources are required to implement the proposed SIMT
execution mode mechanisms.

The most resource-consuming conflict detection mechanism is sWO-sig, as it
requires to store both privates and shared signatures. The storage of per-bank
and per-work-item private signatures is done using private vector registers and
it is already modeled by GPU-LocalTM. This results in a usage of 8192 vector
registers (assuming 8-bit signatures, 256 work-items per work-group, 32 memory
banks, and 32-bit vector registers). Adding shared signatures require an extra
32-bit signature per wavefront and per memory bank. These signatures can be
mapped into scalar registers, resulting in 4 x 32 = 128 scalar registers to store
the shared signatures. The directory-based algorithms require no use of registers
to store signatures, resulting in no pressure on both vector and scalar registers.
The DCD algorithm uses the existing memory allocated by GPU-LocalTM to
store speculative values. The SMDCD algorithm requires 2 extra bits (S and
M) per memory location and per memory bank. As the maximum number of
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lFeature [Value [GPU—LocalTM
Compute Units (CUs) |32 -

Vector Registers per CU|65536 2048

Scalar Registers per CU [2048 8

SIMD Units per CU 4 -

SIMD Lanes 16 -

LDS Size per CU 65546 bytes|36405 bytes (55%)
LDS Banks 32 -

Minimum LDS Latency |2 cycles 5 cycles

Table 3. Relevant features of the AMD’s Southern Islands GPU implementation on
Multi2sim 4.2 and the maximum amount of resources required by 1 work-group using
GPU-LocalTM.

memory words accessed by GPU-LocalTM is 7281, we need 14562 bits to store S
and M. We can carve this space from the vector registers, reducing the number
of vector registers available in 456 (< 1% of 65536 available).

6 Evaluation

In this section we evaluate the behavior of GPU-LocalTM when using the four
mechanisms for serialization described in the previous sections: ascending-single
(GPU-LocalTM default), descending-single, ascending-multiple, and descending-
multiple. Furthermore, we evaluate the following mechanisms for conflict detec-
tion: pRW-sig (GPU-LocalTM default), sWO-sig, DCD, and SMDCD. For a
better understanding of the proposal, we choose pRW-sig as default conflict de-
tection mechanism when evaluating the different serialization modes. When eval-
uating the different conflict detection mechanisms, we choose ascending-single
as the serialization mechanism.

We evaluate our proposal using four benchmarks, using for each one a high
contention input (HC) and a low contention input (LC). The application HT
is the implementation of hash table where, after selecting the bucket to insert
data, we go through every position until we find an empty space. This application
performs many read-only transactions when trying to locate the empty space.
The indexed table (IT) is a different implementation of hash table. In this case
the index of the next empty place is stored in an array. Transactions are simple
read-modify-write operations on a single memory position. The graph coloring
(GC) application is adapted from previous work [6]. It features transactions
that read multiple memory positions, but a single write operation. In addition,
it presents a number of read-only transactions. K-Means (KM) is a clustering
algorithm adapted from Rodinia [3, 4] to work in local memory. Transactions are
used to modify the position of the clusters, allowing read-modify-write operations
on multiple memory locations.
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Fig. 2. Speedup evaluation with respect to GPU-LocalTM.

6.1 SIMT execution mode evaluation

Speedup. Figure 2 shows the speedup obtained when using the four methods
proposed for serialization with respect to GPU-LocalTM. GPU-LocalTM imple-
ments the ascending-single algorithm. In most of the applications we observe
that selecting multiple work-items for re-execution benefits performance by up
to 30%. The use of the descending algorithms show better or similar performance
that their ascending counterparts, depending on the memory access pattern. It is
in K-Means with high contention inputs (KM-HC) where performance is affected
by using the ascending-multiple algorithm. The reason is that, when accessing
multiple memory locations, it create aliases in the signatures and causes false
conflicts to appear even executing the serialization mode.

Breakdown. Figure 3 shows the normalized execution breakdown for the pro-
posed serialization algorithms. Usually, the multiple algorithm improves perfor-
mance and has a positive impact in the time required to execute transactions. In
addition, the memory overheads of managing shadow memory in order to update
MCM have no noticeable impact in performance. The reason is that choosing
multiple work-items for execution pays off the memory overheads.

Transaction Type. Figure 4 shows the percentage of transactions that require
the use of serialization for each algorithm. In some cases, there is no difference
in the number of transactions of each type to be executed. For HT-LC, GC-HC
and GC-LC we observe that the number of transactions requiring work-group
serialization is sightly higher for the ascending-multiple and descending-multiple

BN TXBegin [0 TXCommit M Mem. Overheads [ TXCode [J Non-TX Code]

Normalized
Execution Breakdown
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Fig. 3. Normalized execution breakdown. 1, 2, 3, and 4 stand for ascending-single,
descending-single, ascending-multiple, and descending-multiple, respectively.
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Fig. 4. Normalized type of transaction. 1, 2, 3, and 4 stand for ascending-single,
descending-single, ascending-multiple, and descending-multiple, respectively.

algorithms. The reason is that false conflicts during the wavefront serialization
mode require the use of work-group serialization to solve conflicts.

6.2 Conflict detection mechanism evaluation

Speedup. Figure 5 shows the speedup obtained when using the four conflict
detection mechanisms proposed, normalized to the execution time of pRW-sig
(GPU-LocalTM default implementation). Applications with read-only transac-
tions such as HT and GC benefit from the shared signatures provided by sWO-
sig, as this mechanism is able to filter out false read-read conflicts. For appli-
cations such as IT and KM, where the read-set equals to the write-set, the
performance difference is minimal. Using the slower but precise directory-based
mechanisms (i.e., DCD and SMDCD) only results effective in GC with low con-
tention input. For the rest of the applications, these algorithms do not perform
better that their signature-based counterparts. The reason is that usually the
fast evaluation of the signatures pays off the false positives caused by address
aliases. In the case of the application IT with high contention input, the original
implementation of GPU-LocalTM results optimal. The reasons are that the ap-
plication performs read-modify-write operations on the same memory positions
and that the high number of conflicts are efficiently detected by the signatures.

Breakdown. Figure 6 shows the normalized execution breakdown for the con-
flict detection mechanism. On one hand, as the directory is located in memory,
the use of directory-based algorithms result in a larger memory overhead as com-
pared to the signature-based algorithms. As we see in Figure 5, this increment in

=

OoON P OO

GPU-LocalT™M

Speedup w.r.t.

HT-HC HT-LC IT-HC IT-LC GC-HC GC-LC KM-HC KM-LC

Fig. 5. Speedup evaluation with respect to GPU-LocalTM.
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Fig. 6. Normalized execution breakdown. 1, 2, 3, and 4 stand for pRW-sig, sWO-sig,
DCD, and SMDCD, respectively.

the memory overhead does not harm performance as the conflict detection mech-
anism is more precise. On the other hand, normally the signature-based solutions
spend more time executing transactions as compared to their directory-based
counterparts. The reason is that the less precise conflict detection mechanism
requires more transactions to be retried due to false conflicts. In cases such as
HT and GC we observe a reduction in the time inside transactions when using
sWO-sig. This is explained by a reduction in the number of transactions that
need to retry, as these benchmarks feature read-only transactions that do not
cause read-read conflicts when using the shared signatures.

Transaction Type. Figure 7 shows the percentage of transactions that require
the use of serialization when using the pRW-sig, sWO-sig, DCD, and SMDCD
algorithms. We observe that the use of shared signatures (sSRW-sig) discriminate
the false conflicts of the read-only transactions, reducing the amount of transac-
tions that require serialization in HT-HC, GC-HC and GC-LC. For the HT and
IT algorithms (that feature short transactions) with low contention inputs the
directory-based algorithms are able to finish with no requirement of serialization.

7 Compiler design considerations

In section 5 we model the hardware resources needed by GPU-LocalTM and the
proposed improvements. These resources are carved from the existing memory

[- Workgroup Serialization [0 Wavefront Serialization [ Transactional Execution]

coooor
O N & O OO

Normalized
Transaction Exec. Mode

Fig. 7. Normalized type of transaction. 1, 2, 3, and 4 stand for pRW-sig, sWO-sig,
DCD, and SMDCD, respectively.
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in the GPU architecture. Specifically, memory storage for speculative values and
transactional metadata occupy up to 55% of the 64Kb available per CU, and
a number of vector and scalar registers are needed in order to store execution
masks and signatures, when required. For instance, the less demanding imple-
mentation would use an ascending-single serialization mode as well as a DCD
conflict detection mechanism. This implementation requires no execution mask
different from those defined by GPU-LocalTM and no storage for signatures. On
the opposite side, the ascending-multiple algorithm combined with the sWO-sig
requires of scalar registers to store the novel MCM mask and shared signatures,
as well as vector registers to store private signatures.

In addition, in section 6 we evaluate the performance of the different algo-
rithms. In some cases the detection of conflict during read operations using the
pRW-sig and DCD results beneficial, while for applications with read-only trans-
actions the algorithms able to filter out read-read conflicts such as sWO-sig and
SMDCD are more efficient.

7.1 High level constructs

High-level languages, such as OpenCL, should provide language constructs to
allow programmers to implement TM applications. At least, the TX _Begin and
TX_Commit operations have to be present in order to define the transaction
boundaries (an alternative is to define a code block as atomic). Despite is not
required by hardware to label memory operations as transactional (i.e., TX_Read
and TX_Write) it could be of help to the compiler in order to determine which
memory positions (or variables) require of storage for speculative values. An
initial analysis of the code can determine the amount of memory, scalar registers
and vector register required by the program and the TM implementation.

7.2 TM feasibility

If the hardware requirements of a GPU program (with no TM support) ex-
ceed those available in hardware, the compiler (or runtime, for pre-compiled
programs) is not able to compile (or execute) the program. TM programs intro-
duce new restrictions for these requirements. If, according to the values defined
in Table 3, the program and TM requirements overtake those available in the
GPU, the compilation of the TM code is not feasible. However, if the hardware
requirements of the program (with no TM support) are lower than those avail-
able in the GPU, compilers can perform a code transformation of similar to the
represented in Figure 1 to replace the TM implementation for a coarse-grained
lock implementation. This would affect the performance of the application, but
will relieve programmers from thinking on a TM and non-TM solution.

The same analysis apply to the different implementations of the SIMT ex-
ecution mode and the conflict detection mechanism. Initially, the compiler can
consider an ascending-multiple and sWO-sig implementations, which in many
cases result in a good performance. However, the register requirements of these
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algorithms might be too high for a given program. For instance, many loop in-
dices and other per-wavefront information are mapped into scalar registers. If
the number of scalar registers required by the program is too high, the sWO-sig
conflict detection mechanism might not be feasible as it maps the shared signa-
tures into scalar registers. In that case, the compiler should inform the hardware
through the Application Binary Interface (ABI) that the sWO-sig can not be
used, relying the TM support to the pPRW-sig or a directory-based algorithm. In
the case of selecting the pRW-sig, the same analysis is to be performed for the
vector registers.

7.3 Read-only transactions

Analysis of the high-level code can be used to determine if any of the transac-
tions (or any code path inside a transaction) is read-only. During evaluation,
we observe that sWO-sig performs better in read-only transactions thanks to
its ability to differentiate conflicts in read-read accesses and the effectiveness of
the signatures to easily detect conflicts. For this reason, in case of availability of
resources, compilers should choose the sWO-sig when detecting read-only trans-
actions. Additionally, having read-only transactions is a good hint for selecting
the execution of multiple work-items as it is unlikely that read-only transactions
cause a false positive if they are chosen for re-execution.

7.4 Large read-set and write-set

Applications with a large memory imprint, such as KM, may cause false positives
in the signatures due to the large number of aliases (i.e., memory addresses that
map on the same bits in the signatures). For these applications, a directory-based
conflict detection mechanism is more efficient. Despite, during our evaluation,
it did not outperform the signature-based solutions, it requires no hardware
resources to store signatures. The application breakdown shows that, for this
type of application, the amount of time executing (and retrying) transactions is
reduced with respect to the signature-based implementations.

8 Conclusions

In this paper we analyze previous work on the SIMT execution model for trans-
actional memory on GPU scratch-pad memory and we gather different proposals
for improving its performance. Firstly, when a deadlock is detected, we allow to
choose more than one work-item for re-execution. Secondly, we allow to change
the order of execution of conflicting work-items. Results show that we can ob-
tain up to 30% of performance improvement with minimal overhead. Lastly, we
consider different conflict detection techniques that speed up the performance of
the applications up to 9X.

These features can coexist implemented in hardware. The hardware can be
configured via ABI to select the most appropriate technique. In this paper we
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provide considerations for compiler design in order to choose which features are
convenient for a given application. Future research directions consider imple-
menting these compiler features as well as analyzing other compiler and runtime
decisions in order to improve TM efficiency on GPUs.
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