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Abstract—Compiler writers typically focus primarily on the
performance of the generated program binaries when selecting
the passes and the order in which they are applied in the standard
optimization levels, such as GCC –O3. In some domains, such
as embedded systems and High-Performance Computing (HPC),
it might be sometimes acceptable to slowdown computations if
the energy consumed can be significantly decreased. Embedded
systems often rely on a battery and besides energy also have
power dissipation limitations, while HPC centers have a growing
concern with electricity and cooling costs. Relying on power
policies to apply frequency/voltage scaling and/or change the
CPU to idle states (e.g., alternate between power levels in
bursts) as the main method to reduce energy leaves potential for
improvement using other orthogonal approaches. In this work
we evaluate the impact of compiler pass sequences specialization
(also known as compiler phase ordering) as a means to reduce the
energy consumed by a set of programs/functions when comparing
with the use of the standard compiler phase orders provided
by, e.g., –OX flags. We use our phase selection and ordering
framework to explore the design space in the context of a
Clang+LLVM compiler targeting a multicore ARM processor
in an ODROID board and a dual x86 desktop representative of
a node in a Supercomputing center. Our experiments with a set
of representative kernels show that there we can reduce energy
consumption by up to 24% and that some of these improvements
can only be partially explained by improvements to execution
time. The experiments show cases where applications that run
faster consume more energy. Additionally, we make an effort to
characterize the compiler sequence exploration space in terms of
their impact on performance and energy.

I. INTRODUCTION

Mapping applications efficiently is very important when
targeting systems with strict requirements (e.g., embedded
systems, HPC) , such as energy/power, performance, memory
and/or storage. Software optimization driven by an optimizing
compiler helps to comply with requirements while using less
resources in the process, contributing to the reduction of
hardware costs and/or improving user experience.

An optimizing compiler sequence is a set of analysis or
transformation passes that if orderly executed by a compiler
(e.g. GCC [11], LLVM [12]) over a tool specific representation
of a function and/or program, will result in the generation
of a representation of the same function/program optimized
regarding a given metric. The resultant representation typically
assumes the form of machine code (e.g., object code or
executable) for software compilation (which is the focus of the

experiments presented in this paper); or an application-specific
architecture described in a hardware description language (e.g.,
Verilog, VHDL) in the case of hardware compilation.

Compilers are typically distributed with a set of standard
compiler optimization levels represented by flags. These flags
represent fixed compiler sequences and are typically tuned
only for performance or code size. Those sequences are
accessible using flags such as –O1/–O2/–O3 for performance,
and –Os for code size. The existence of such flags is unde-
niably useful, as their use results in compiled code that not
only tends to runs faster, but also tends to be more energy
efficient. Programmers typically rely on the standard compiler
optimization levels to optimize their functions/applications.

Optimizing for performance and optimizing for energy
efficiency are closely related. Total energy consumption in
CMOS technology is calculated by Equation 1, where Vdd

is the supply voltage, Ileak is the leakage current, Cload is
capacitance and f is the operating frequency.

E =

∫ t

0

(VddIleak + CloadV
2
ddf)dt (1)

Static power consumption is given by VddIleak and dynamic
power consumption by CV 2

ddf . In a situation where power
is kept constant then a faster program is always a more
energy efficient program. However, power is not constant.
Nowadays, processors use a wide range of mechanisms in
order to make computations more efficient. Power depends on
frequency/voltage scaling (also known as CPU throttling), a
technique for conserving power. In microprocessors typically
there exist frequency/voltage pairs (also known as P-states).

Power depends on what operating/idle states (C-states, from
C0 to C6 on Intel CPUs) are active at any given time. The
processor alternates between an operating state (e.g., C0) and
idle states (e.g., C1 to C6), that result in the internal and/or
external clocks being halted, and/or the voltage being further
reduced and/or the turning off the cache memory. Additionally,
the activity in different processor components, such as the
SIMD units (e.g., AVX2), memory caches, cores, can result in
increased power consumption. Finally, other components such
as the system RAM also have variable energy consumption
patterns depending on their usage, which depends on a number



of factors. For instance, CPU cache misses increase the energy
consumption.

Because of these aspects, optimizing for performance may
not be fully in line with optimizing for energy; specially
when relying on fixed compiler sequences such as the ones
represented by the –OX flags. Even if it was the case that
energy efficiency always improved in direct relation with per-
formance (i.e., 2× faster would equal 2× less energy), the use
of the –OX flags (which are typically tuned for performance)
would still leave potential for better performance and energy
efficiency through the use of compiler sequences specially
tailored for the given function and target platform pair. No
fixed compiler sequence can result in the best possible output
code for all input functions/applications, even if considering a
single target.

Phase selection and/or phase orders specialized for the
input source code, non-functional requirements, and target, can
lead to better software implementations. Phase selection deals
with the selection of which compiler passes are executed in
a given fixed compiler pipeline. A phase order is a set of
analysis/optimization/lowering compiler passes executed in a
given order.

In this paper we experimentally show that optimizing for
performance through compiler-driven software optimization
as a means of optimizing for energy does not always lead
to the most energy efficient compiled functions/programs. We
achieve this goal by compiling multiprocessor-ready versions
of 12 PolyBench/C [13] kernels, to a dual Intel Xeon work-
station, representative of a supercomputer node and to an
ARM-based ODROID XU+E board, representative of hard-
ware present on a mobile phone or tablet, and comparing
how execution time and energy consumption are affected
for the execution of the binaries generated from compilation
with phase orders generated by a design space exploration
(DSE) method. The results show that although improving
performance tends to improve energy efficiency, there are a
number of situations where the compiler sequences that result
in the best performance do not translate into the best energy
consumption. In such cases, there are compiler sequences that
allow achieving even better energy savings.

The rest of the paper is organized as follows. Section II
explains the methodology of the experiments presented in this
paper. Section III presents the experimental results. Related
work is presented in Section IV. Final remarks about the
presented work and ongoing work are presented in Section
V.

II. EXPERIMENTS

We performed a number of experiments in two relevant
target platforms in order to evaluate the impact of compiler
optimizations using specialized compiler phase orders on both
energy and performance.

A. Platforms

We consider two systems. A workstation with two Intel
Xeon E5-2630V3 CPUs (@2.4 - 3.2 GHz Turbo), and 128 GB

of DDR4 (@2133 MHz), representative of a supercomputer
node; and an ODROID XU+E single board computer [25],
with a Samsung Exynos5̃410 SoC (part of the Exynos 5
Octa series), the same SoC in the the Samsung Galaxy
S4 smartphone. The Xeon E5-2630V3 is an X86-64 CPU
with Intel’s latest microarchitecture for the workstation/server
market, the Haswell-EP microarchitecture. The Exynos 5410
SoC on the ODROID includes a Cortex-A15 1.6 GHz quad
core CPU and a 1.2 GHz Cortex-A7 quad core CPU, in a
configuration referred to as big.LITTLE, and 2 GB of LPDDR3
on the same package. The big cores are designed for maximum
compute performance, while the LITTLE cores are designed
for maximum power efficiency. Unlike a traditional 8-core
CPU (or a dual 4 core), the big.LITTLE configuration means
that the big (Cortex-A15) and the LITTLE (Cortex-A7) CPU
cores take turns to execute a task, which is migrated between
the two types of cores during execution, in a joint effort to
make computation more power and energy efficient.

The operating system for both platforms is Ubuntu. On the
dual Xeon-based workstation we use a 64-bit Ubuntu 16.04
LTS system with Linux kernel 4.4.0, and on the ODROID
board we use Ubuntu 14.04.2 LTS with Linux kernel 3.4.75.

For experiments with OpenMP, we use version 3.7.1 of the
LLVM OpenMP runtime [19] in both platforms.

For the dual Xeon E5 V3 platform we consider the default
power settings with Turbo-boost activated to effectively drive
some of the CPU cores up to 3.2 GHz from the base clock
of 2.4 GHz. For the ODROID XU+E board we use the two
types of ARM cores (Cortex-A15 @1.2GHz and Cortex-A7
@1.6 GHz) in the big.LITTLE configuration.

In both cases, frequency voltage scaling is activated and
managed by the default power governor on the Linux distri-
butions used; the powersave power governor for the Dual Xeon
and the on-demand power governor for the ODROID.

B. Functions

In this experiments we use 12 kernels from PolyBench
[13] (version 4.1), and generated parallel versions of the
kernels with PLUTO [14], a tool for automatic parallelization.
PLUTO relies on a polyhedral model generated from the input
function/program, specially the parts concerned with loops and
operations with arrays, as an abstraction to safely perform
parallelization of loops thorough annotating the code with
OpenMP pragmas (coarse-grained parallelism) and apply other
high-level transformations, such as tiling loops to improve
locality (reduces cache misses), and vectorization (i.e., use of
SIMD units such as AVX).

Table I depicts the functions (and input data) used for the
experiments and their number of lines of code (excluding
comments) for both the original C version and the OpenMP
annotated versions generated using PLUTO. Parallel version
of functions identified by an asterisk (*) were generated with
loop tiling (–tile option) in addition to parallelization (using
the –parallel option), which annotates the code with OpenMP
pragmas.



TABLE I
DESCRIPTION OF 12 POLYBENCH/C 4.1 FUNCTIONS, INPUT PARAMETERS,

AND LINES OF CODE FOR THE ORIGINAL IMPLEMENTATIONS AND
OPENMP VERSIONS GENERATED WITH THE PLUTO AUTOMATIC

PARALLELIZER.

Function Description Input CLOC

2mm Autocorrelation of an input
vector.

ni: 400, nj:450,
nk:550, nl: 600

11 / (156)

3mm Endian-swap a block of 16-
bit values.

ni: 400, nj:450,
nk:500, nl: 550, nm:
600

27 / (136)

atax Endian-swap a block of 32-
bit values.

n: 10800, m: 10800 31 / (73)

correlation* Endian-swap a block of 64-
bit values.

n: 1000, m: 800 39 / (174)

doitgen* Move block of memory. nr: 120, n: 110,
np:130

13 / (62)

gemver* Vector product of two input
arrays.

n: 10000 7 / (67)

jacobi-2d* Dot product of two arrays. n: 650, tsteps: 250 17 / (175)
mvt Complex FIR. n: 6000 24 / (29)
nussinov * Least Mean Square Adaptive

Filter.
n: 1100 17 / (57)

seidel-2d Convert IEEE FP into Q.15
format.

n: 800, tsteps: 200 16 / (27)

syr2k Matrix Multiply. n: 600, m:500 19 / (44)
syrk Transposes a matrix of 16-

bit values.
n: 800, m:700 8 / (43)

C. Energy and Performance Measurements

For the experiments presented in this paper we measured
the energy consumed by CPU and RAM on each platform.
The energy values reported are always for the sum of both.

For measuring energy on the Intel system we use the Run-
ning Average Power Limit (RAPL) interface, which provides
access to a mechanism to regulate power usage and to a
set of registers with power and energy measurements. Power
measurements are generated on the fly, per socket, using an
on-chip energy model that relies on hardware performance
counters and I/O. RAPL is available in Intel CPUs starting
with the Sandy Bridge microarchitecture, and has been shown
to correlate well with real measurements or at least to be
indicative of overall energy and power trends [15], [16]. RAPL
gives access to four domains, Package, which includes CPU
cores, memory cache, memory controller, PPO (CPU cores),
PP1 (GPU) and DRAM. For our experiments we evaluate
energy consumption as the sum of the energy consumption
reported for the Package and the DRAM domains of each CPU.

Although RAPL has been found to underestimate DRAM
energy use on some architectures, this does not impact
Haswell-EP CPUs, as this architecture uses a different esti-
mation mechanism that includes actual measurements [16].
Haswell-EP does not support PP0 [16], but that makes no
difference for these experiments because we want to take into
account the energy used by cache and the memory controller in
addition to the energy used by the CPU cores. RAPL readings
have a sampling frequency of close to one millisecond (1
KHz).

The Odroid XU+E single board computer features 4 energy
sensors: ARM, KFC, MEM and G3D. We query these sensors
for energy measurements (except the G3D sensor), which refer
to the A15 (big CPU), A7 (LITTLE CPU), memory and GPU
subsystems, respectively. For each of these, voltage, amperage
and wattage are reported. The update period of the energy
sensors of the Odroid XU+E devices is 263,808 microseconds.

We access the Intel RAPL measurements through the Linux
perf event subsystem, and the wattage measurements for the
ODROID by querying the /dev/sensor_* device files,
using the ioctl function.

For performance measurements we rely on clock gettime()
Linux calls, which compared with other calls for tim-
ing measurement (e.g., gettimeofday()) allows higher pre-
cision and the ability to request specific clocks. We use
the the CLOCK MONOTONIC clock. The Linux function
clock_getres() reports one nanosecond of resolution in
both platforms for the clock used.

D. Datasets

PolyBench provides mini, small, medium, large, and extra
large datasets. We selected one of these datasets on a function-
by-function basis.

For each function, we selected/costumized a dataset to make
the execution time of each function (compiled with –O3)
larger than 1 second on the ODROID XU+E board in order
to have enough samples to obtain sufficiently precise energy
measurements.

We use the same datasets (i.e., the ones we selected on the
ODROID platform) with the Intel Xeon platform, resulting
in execution times much smaller than on the ARM-based
board, but still well above what is required for precise energy
measurements with RAPL.

E. Compilation and Validation

There are two compilation flows: one for the function to be
optimized and other for the main() function (and any other
functions/code if existent). We use Clang [17] to generate
LLVM IR from the C code of the functions considered for
optimization. This LLVM IR is then passed to the LLVM
Optimizer tool (the opt tool) for optimization. The transformed
LLVM IR, after optimization with opt using a compiler phase
order passed as parameter (or one of the –OX flags), is then
passed to the LLVM static compiler (the llc tool) for generation
of the assembly code for the target architecture (i.e., x86-64
for the Xeon CPUs and ARMv7 for the ARM CPUs). The IR
for the main() function and any other functions, other than the
function to optimize, are do not transformed by the opt tool.
Figure 1 shows the compilation flow.

As we compiled and executed the application on the same
platform, we used the -mcpu=native flag with the llc tool.
This resulted in the generation of assembly code with vector
instructions, NEON instructions for the ARM CPUs and AVX
instructions for the Xeon CPUs. In addition, we used -fp-
contract=fast with llc so that fused multiply-add machine
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Fig. 1. Compilation flow for each source code.

instructions (supported by both the Intel and the ARM CPUs
used) are used when possible.

In order to deal with a situation where the compiler tools
get stuck (i.e., gets trapped in an infinite loop, for some
combination of function, phase order and/or target), our DSE
framework allows setting a time limit for each call to the tools
(in this case, clang, opt, and llc). After some experiments
with different values, we set this time limit to 10 seconds
for the Xeon platform and 1 minute for the ODROID, which
gives more than enough time for the tools to work with
the input functions (or an LLVM IR representing them). In
the experiments with both targets, each binary generated by
compilation is given 1 minute to execute.

The generated binaries are validated by comparing the
output of a non-optimized serial version (i.e, as originally
from PolyBench/C 4.1) of the function that is being optimized
with the output of the optimized function. We classify as
correct each output value if the absolute value of the difference
between the two outputs (a positive floating point number)
does not differ more than 0.001.

For the validation step we always use the smallest available
PolyBench/C dataset (i.e., the mini dataset), in order to reduce
the execution time needed for the validation.

F. Compiler Phase Orders Exploration

We created a set of sequences by randomly generating
1,000 compiler sequences composed of 128 compiler passes
each using our compiler phase selection/ordering exploration
framework, using an ARC4-based pseudo-random number
generator from [18]. For each position of a compiler sequence,
we randomly selected a pass from the set of LLVM 3.7.1
passes presented in Table II.

This set of sequences was iteratively used to compile each
of of the functions considered, resulting in the generation of
up to 2, 000 binaries for each function considered in the ex-
periments. 1, 000 binaries for the OpenMP versions and 1, 000
binaries for the versions without OpenMP. We note that some
sequences failed to produce valid binaries when compiling
some of the functions. Energy consumption and execution time
metrics were extracted from a single execution of each of those
binaries, relying on the OMP NUM THREADS environment
variable to set the number of OpenMP threads for the OpenMP
versions.

Then, for any given function, we built a model as in
[22], [23] with the phase orders (generated in the previous
step) for all other 11 PolyBench/C functions (one phase
order per function) for the configuration (i.e., no OpenMP, or
OpenMP with specific number of threads) that resulted in the

TABLE II
LLVM OPTIMIZER COMPILER PASSES USED FOR EXPLORATION.

-aa-eval -adce -add-dis. -alig.-f.-ass.
-alloca-hoisting -always-inline -argpromotion -ass.-cache-track.
-atomic-expand -barrier -basicaa -basiccg
-bb-vectorize -bdce -block-freq -bounds-checking
-branch-prob -break-crit-edg. -cfl-aa -codegenprepare
-consthoist -constmerge -constprop -correlated-prop.
-cost-model -count-aa -da -dce
-deadargelim -debug-aa -delinearize -die
-divergence -domfrontier -domtree -dse
-early-cse -elim-avail-ext. -extract-blocks -flattencfg
-float2int -functionattrs -globaldce -globalopt

-globalsmodref-aa -gvn -indvars -inline
-inline-cost -instcombine -instcount -instnamer
-instrprof -instsimplify -intervals -ipconstprop
-ipsccp -irce -iv-users -jump-threading

-lazy-value-info -lcssa -libcall-aa -licm
-lint -load-combine -loop-accesses -loop-deletion

-loop-distribute -loop-extract -loop-ex.-single -loop-idiom
-loop-instsimpl. -loop-interchan. -loop-reduce -loop-reroll

-loop-rotate -loop-simplify -loop-unroll -loop-unswitch
-loop-vectorize -loops -lower-expect -loweratomic
-lowerbitsets -lowerinvoke -lowerswitch -mem2reg
-memcpyopt -memdep -mergefunc -mergereturn

-mldst-motion -mod.-debuginfo -nary-reass. -no-aa
-objc-arc -objc-arc-aa -objc-arc-apelim -objc-arc-contrac.

-objc-arc-expand -pa-eval -part.-inliner -part.-inl.-libcal.
-pl.-ba.-safe.-im. -place-safep. -postdomtree -prune-eh

-reassociate -reg2mem -regions -rewr.-sta.-for-gc
-rewrite-symbols -safe-stack -sancov -scalar-evolution

-scalarizer -scalarrepl -scalarrepl-ssa -sccp
-scev-aa -scoped-noalias -s.-c.-o.-f.-gep -simplifycfg

-sink -slp-vectorizer -slsr -spec.-execution
-sroa -strip -str.-dead-d.-info -str.-d.-proto.

-strip-d.-declare -strip-nondebug -structurizecfg -tailcallelim
-targetlibinfo -tbaa -tti -verify

lowest energy consumption when compiling with the standard
optimization levels. This model represents a sequence space
from which not only the sequences used in its construction
can be regenerated, but others sharing similarities with them
can be generated as explained in [23]. We used the leave-
one-out approach to validate, implying the construction of 12
different models per target platform by considering the best
phase orders for each of the functions except the one being
optimized at any given time.

We relied each of the models to iteratively generate 1,000
sequences (sequences generated between different models
differ), and used them in the compilation of the function
correspondent to the use of each specific model.

Energy consumption and performance metrics were ex-
tracted from evaluating the binaries a single time, and we
selected the 5% (i.e, 50) compiler phase orders that resulted in
the lowest energy consumption. Then, we executed the binaries
generated with those phase orders for 25× (the same number
of times as for the –Ox experiments), and analyzed the energy
consumption and performance of the binaries.

We identified, for each function and target platform (i.e.,
dual Xeon and ODROID), the –OX flags that leads to the
lowest energy consumption for each number of threads on the
OpenMP versions and for the compilation without OpenMP.



Then we calculated, for each of the 50 compiler sequences
previously selected, energy consumption and performance im-
provement ratios over those –OX configurations. For instance,
for the 2mm function on the dual Xeon workstation, the lowest
energy consumption version is the one using OpenMP with 16
threads (as with most other functions on the Xeon target) and
with the –O3 optimization level; therefore ratios presented in
this paper. For each function and target pair, we report in this
paper the energy consumption and performance improvement
ratios for the version using the same number of OpenMP
threds (or without OpenMP).

III. RESULTS

We first present results of energy consumption, performance
and average power for the functions compiled with the default
optimization flags. Including results for the kernels compiled
without OpenMP support, and with OpenMP support consid-
ering different numbers of OpenMP threads.

In addition, we present results for exploration of compiler
phase orders focusing on energy consumption, generated with
the methodology explained in Section II-F. We analyze those
results by comparing them with the energy consumption
and performance of the binaries generated with the standard
optimization level flags, and we also individually comment
on the level of correlation between energy consumption and
performance.

Energy and performance value pairs are obtained by av-
eraging 25 executions of each of the binaries resulting from
compilation of a given function with a specialized phase order
(or a –Ox flag).

Table III presents the compilation (i.e., which optimization
flag) and execution configurations that lead to the lowest
energy consumption, the best performance, or the lowest
average power consumption. Serial execution is represented
by S for the version compiled without OpenMP and 1T (i.e.,
OpenMP with a single thread) otherwise.

A. Energy and Performance with Standard Optimizations

We present results for the use of 1, 2, 4, 8, 16 and 32
OpenMP threads on the dual Xeon and 1, 2 and 4 threads on
the ODROID when executing the functions compiled with the
standard optimization flags, as well as results for experiments
without OpenMP.

1) Dual Xeon: Figures 2, 3 and 4 depict the absolute
energy consumption (in joules), the absolute performance
(in milliseconds), and the average power consumption (in
watts), on the dual socket Xeon platform for the execution
with and without OpenMP of the 12 PolyBench/C functions
considered for the experiments. The functions were compiled
with no optimization and with the -O1, -O2, -O3 standard
optimization flags. Figure 5 represents energy consumption
and execution time on the same chart for the binaries generated
by compilation of the considered functions with the standard
optimization levels.

Considering a number of execution threads, the use of the
standard optimization levels (i.e., –O1, –O2, –O3) always

TABLE III
BEST COMPILER FLAG AND EXECUTION PARAMETERS FOR FOR EACH

KERNEL AND TARGET PLATFORM.

Dual Xeon ODROID
Function Energy Perf. Power Energy Perf. Power
2mm 16T –

O3
16T –
O1

S – O3 S – O2 4T –
O1

1T –
O3

3mm 16T –
O3

16T –
O3

S – O2 S – O3 4T –
O2

S – O3

atax 16T –
O3

32T –
O1

1T –
O3

S – O3 4T –
O1

S – O3

correlation S – O3 16T –
O1

S – O3 S – O1 S – O1 S – O0

doitgen S – O3 S – O3 S – O3 S – O1 S – O1 1T –
O2

gemver 32T –
O3

32T –
O3

1T –
O3

S – O3 4T –
O1

S – O1

jacobi-2d 8T –
O1

8T –
O2

S – O1 S – O2 4T –
O2

S – O0

mvt 16T –
O2

16T –
O3

1T –
O1

S – O2 4T –
O2

1T –
O1

nussinov 16T –
O1

16T –
O1

S – O3 S – O3 4T –
O1

S – O1

seidel-2d 16T –
O3

32T –
O2

S – O1 2T –
O2

4T –
O0

S – O1

syr2k 16T –
O2

16T –
O2

S – O2 S – O2 4T –
O3

S – O2

syrk 16T –
O1

32T –
O3

S – O1 S – O3 S – O2 S – O1

results in the generation of binaries with both the lowest energy
consumption and highest performance, when compared with
the binaries generated without optimization. The improvement
obtained by using those flags is considerable, especially when
OpenMP is not used (up to 87% energy consumption reduc-
tion). Additionally, when not using OpenMP –O2 and –O3
tend to improve energy consumption and performance over
–O1. The only exception are gemver and seidel. The use
of –O1 with gemver results in saving 42% energy (vs. not
using any optimization level), but using –O2 or –O3 results
in no additional improvement. With seidel-2d none of the
optimization levels resulted in saving energy or improving
performance. When OpenMP is used the norm is that –O2
and –O3 do not tend to reduce the energy consumption or the
performance further over –O1 by a significant amount, and
in fact sometimes result in less energy efficient binaries. The
binaries optimized with those optimization levels also tend to
have lower average power consumption (atax, gemver, seidel-
2d are the exceptions) if OpenMP is not used.

The use of OpenMP resulted in performance degradation
for some functions when using less than two threads. Three
of the most extreme cases were the atax, correlation and
doitgen functions. The atax and the correlation functions need
16 threads for the OpenMP version to surpass the versions
without OpenMP. Interestingly, the correlation function with-
out OpenMP (with –O2 or –O3) consumes 2× less energy
than any other version, making this a good example to show
that energy and power are not always correlated. The serial
version without OpenMP of the doitgen function is faster
than any OpenMP version, independently on the number of



Fig. 2. Energy consumption in joules for each function when targeting the Dual Xeon with the standard optimization flags.

Fig. 3. Execution time in milliseconds for each function when targeting the Dual Xeon with the standard optimization flags.

Fig. 4. Average power in watts for each function when targeting the Dual Xeon with the standard optimization flags. Calculated from energy consumption
and execution time by P = E/∆t.
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Fig. 5. Energy consumption in joules (horizontal axis) and execution time in milliseconds (vertical axis) on the Dual Xeon.

threads used. The use of 16 and especially 32 threads con-
siderably negatively impacts energy consumption more than
performance. Other example where the use of more threads
(16 or 32 threads) hurts energy consumption and performance
disproportionally is jacobi-2d. Performance tends to improve
over the serial non-OpenMP with the use of 4 or 8 OpenMP
threads.

As expected, the average power tends to increase with the
number of OpenMP threads. The inverse behavior is seen for
some functions when going from 1 to 2 OpenMP threads

(2mm, 3mm, correlation, syrk) or from 2 to 4 threads (jacobi-
2d, nussinov, syr2k) The serial versions without OpenMP tend
to use less power, being atax, gemver, mvt the exceptions.

2) ODROID XU+E: Figures 6, 7 and 8 depict energy
consumption, performance and power on the ODROID. Figure
9 represents energy consumption and execution time on the
same chart for the binaries generated by compilation of the
considered functions with the standard optimization levels.

As with the Xeon-based platform, for the same function
configuration (i.e., without OpenMP or with a given number



Fig. 6. Energy consumption in joules for each function when targeting the ODROID with the standard optimization flags.

Fig. 7. Execution time in milliseconds for each function when targeting the ODROID with the standard optimization flags.

Fig. 8. Average power in watts for each function when targeting the ODROID with the standard optimization flags.
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Fig. 9. Energy consumption in joules (horizontal axis) vs. execution time in milliseconds (vertical axis) on the ODROID.

of OpenMP threads), on the ODROID the use of –O1, –O2 or
–O3 tends to result in lower energy consumption (the non-
optimized versions never consumed less energy). The only
exception is seidel-2d with 4 OpenMP threads, in which case
energy consumption increases with the use of any optimization
level.

Performance and energy consumption changes with use of
optimization levels are closely related. If energy consumption

decreases, then wall time tends to decrease. This these changes
do not always happen in the same proportion for both metrics.
For instance, seidel-2d without OpenMP consumes up to 13%
less energy if compiled with the standard optimization levels,
while improving less than 1% in terms of performance in
comparison with not relying on any of the optimization levels.

Compilation without OpenMP resulted in the generation of
binaries that use less energy, with the seidel-2d function being



the only exception. For this function the binary compiled with
OpenMP saves more energy if executed with two threads.

The ODROID consumes less energy than the dual Xeon
workstation and the dual Xeon based system executes the
compiled functions much faster than the ARM processors
on the ODROID. The average power consumption on the
ODROID is also much lower, with all functions executing
bellow 8 watts.

B. Energy and Performance with the Generated Optimization
Sequences

We present next plots of energy/performance ratios for both
the dual Xeon and the ODROID platforms. Results falling over
a straight line represent compiler phase orders that resulted
in directly correlated energy consumption and performance
(increases in energy efficiency lead to proportional increases
in performance, and vice versa). Points diverging to one side
or the other represent compiler sequences that lead to non-
aligned energy efficiency or performance gains.

1) Dual Xeon: Figure 11 shows energy consumption and
execution time ratios for the binaries generated with phased
orders specialized for improving energy efficiency. The results
presented are ratios over the best individually found –OX
(i.e., –O0, –O1, –O2, or –O3) for each function, metric and
target/configuration triplet.

The data collected from the experiments suggests that
although energy efficiency and performance tend to correlate,
there are sequences that lead to extreme cases of perfor-
mance gains without energy improvements, or vice versa.
For instance, in the case of 2mm, there are a lot of en-
ergy/performance ratios all over the chart, meaning there are
a lot of sequences resulting in asymmetrical energy reduction
and performance gains. Additionally, for 2mm the compiler
sequence that leads to best energy savings (point most to right)
does not lead to the highest performance (point most to the
top). For atax two compiler phase orders result in the same
best energy efficiency (the two points most at right) while
having different performance. For the functions where the
single threaded non-OpenMP version resulted in best energy
efficiency, such as correlatio, doitgen, the points on the chart
form a straight line. This suggests that serial executions on the
Xeon platform tend to result in higher energy efficiency and
performance correlation.

2) ODROID XU+E: As with the Xeon platform, although
energy consumption and performance are for most part very
correlated (i.e., both tend to improve or get worse together),
there are pairs of points (representing ratios of energy effi-
ciency and performance using specialized phase orders) for
any functions where energy decreases without performance
increasing at all, and vice versa.

For 3mm there are many sequences resulting in binaries
reducing the energy consumption (up to

IV. RELATED WORK

Manually devising suitable phase orderings requires deep
knowledge about correlation between code features, target

architecture and compiler passes interdependence. Compilers
typically have a large number of compiler passes, making this
a complex problem.

Testing all possible passes combinations is not feasible in
many cases (e.g., LLVM has more than a hundred of passes),
as that would result in PK phase orders if considering P
passes and phase orders composed of up to K passes each.
To be able to perform automatic phase ordering exploration
despite the large design space, researchers have been proposing
a number of approaches, falling in the iterative and/or ML-
based category. Most only have performance as optimization
metric when considering software compilation, which may
have to be in part related to the fact that most simulators
and execution platforms do not provide an integrated way to
measure energy and/or power.

Almagor et al. [3] rely on Genetic Algorithms (GAs),
hill climbers, and greedy constructive algorithms to explore
compiler phase ordering at program-level. With 200 to 4,550
compilations, their approach can find custom sequences that
are 15% to 25% better than the human-designed fixed se-
quence originally used by the compiler when targeting a
SPARC processor.

Kulkarni et al. [2] propose GAs to iteratively explore com-
piler pass sequences for improving performance at function-
level, targeting an Intel StrongARM SA-100 processor. In
this work, 15 compiler passes of the Very Portable Optimizer
were considered for exploration. Two approaches for achieving
faster searches when using GAs are presented. They improve
exploration efficiency by avoiding unnecessary executions and
modified the search, resulting in average search time reduc-
tions of 62% and in a reduction of average GA generations
by 59%. Additional techniques to prune the exploration space
are presented in [4] and [5].

Copper et al. [1] explore phase orders at program-level with
randomized search algorithms based on genetic algorithms, hill
climbers and randomized sampling. They target a simulated
abstract RISC-based processor with a research compiler, and
report properties of several of the generated sub-spaces of
phase ordering and the consequences of those properties for
the search algorithms.

Agakov et al. [8] present a methodology to reduce the
number of evaluations of the program. Models are generated
taking into account program features (30 features reduced
to 5 using principal component analysis) and the shapes of
compiler sequence spaces generated from iteratively evaluating
a training set of programs. These models are then used by
the iterative exploration for a new program. They present
results concerning the evaluation of two distinct models, an
independent identically distributed model and a stationary
Markov model, when compiling with the SUIF source-to-
source compiler coupled with Code Composer and GCC,
for generating code for the TI C6713 and AMD Au1500
embedded processors. The two models were tested with GAs
in order to determine how much of the design space can be
pruned by the proposed approach. Experimental results using
the leave-one-out method show the exploration process can be
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Fig. 10. Ratios of energy consumption (horizontal axis) and execution time (vertical axis) over the best per-function standard optimization level and execution
configuration on the dual Xeon.
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Fig. 11. Ratios of energy consumption (horizontal axis) and execution time (vertical axis) over the best per-function standard optimization level and execution
configuration on the ODROID.

accelerated by an order of magnitude, with no negative impact
on the performance of the generated code.

Purini et al. [7] present an approach which relies on a list
of compiler sequences previously found for a representative
set of programs. Given a new program, each of these compiler
sequences is tested and the one leading to better performance is
used to compile the new program. The approach is tested con-
sidering 62 machine-independent LLVM 3.0 compiler passes
when generating the list of compiler sequences considered for
testing with new programs. Results show an average speedup
up to 14% when targeting an Intel Xeon W35550.

Sher et al. [9] describe a compilation system that relies on
evolutionary neural networks for phase ordering exploration
using LLVM. The neural networks output a set of probabilities
of use for each compiler pass, which is then sampled a
number of times to generate different compiler sequences.
The neural networks use 48 and 44 features as input for
the program- and the function-level approaches, respectively.
The system was able to find compiler sequences resulting in
performance improvements between 5% and 50% on Intel

Core i7 considering 53 (program-level) and 34 (function-level)
LLVM compiler passes for exploration.

Martins et al. [21], [24] proposed a clustering method to
reduce the exploration space in the context of compiler pass
phase selection and order exploration. Performing clustering
on top of source code representations generated with a finger-
printing method allows the classification of a new source code
into one of the existing clusters. Each cluster has associated
with it only the compiler passes that are known to perform
well with codes that are represented by similar fingerprints, so
that the exploration space (and as direct result, the exploration
time) is considerably reduced. The approach explored the use
of 49 compiler passes of the CoSy-based REFLECTC [10]
compiler and of 124 passes when considering the use of LLVM
3.5 [12]. Experimental results reveal that the clustering-based
DSE approach achieved a significant reduction on the total
exploration time of the search space (18× over a Genetic
Algorithm approach for DSE) at the same time that important
performance speedups (43% over the baseline) were obtained
by the optimized codes.



In a previous work [26] we presented and validated an
approach that uses a graph to represent compiler pass orderings
likely to improve performance of the generated binaries. That
graph is created based on statistical information extracted from
sequences previously found for a reference set of functions.
In this paper we use a similar approach to generate compiler
sequences focusing on reducing energy consumption.

V. CONCLUSION

This paper evaluated compiler pass phase ordering as an
orthogonal approach to reduce energy consumption. The ex-
periments presented in this paper include execution time, en-
ergy and power consumption measurements when considering
different optimizations and OpenMP implementations (varying
the number of threads) for both an ARM-based embedded
system (ODROID) and an Xeon-based workstation.

Our experimental results suggest that energy efficiency and
performance are not perfectly correlated. Optimizing specif-
ically for energy allows in some cases to achieve higher
energy savings than if optimizing only for performance. For
the functions considered and for both the ODROID and the
Xeon workstation, we found compiler phase orders that, in
comparison with other phase orders, achieve higher energy
savings while not improving (or even degrading) performance.

We are currently focusing on refining the process of building
the graph model used to generate specialized phase orders and
we are exploring approaches to multiobjective optimization.

The experiments presented in this paper can be extended by,
e.g., testing the impact of different power levels on the Xeon
workstation, repeating the experiments with the ODROID
using the big.LITTLE ARM CPU in different configurations
(e.g., only the Cortex-A7 cores or only the Cortex-A15 cores).
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