
How to Write Performance Portable Codes using
the Heterogeneous Programming Library

Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Computer Architecture Group
Universidade da Coruña, Spain

{jorge.fernandez.fabeiro, diego.andrade, basilio.fraguela, doallo}@udc.es

Abstract Parallel programming in heterogenous environments faces two
important problems: (1) The writing of parallel codes requires a big ef-
fort from the programmers, and (2) In order to achieve the maximum
obtainable performance, programmers have to hand-tune parallel codes
for each device. The Heterogeneous Programming Library (HPL) tackles
the first problem offering an easy way to write parallel codes that can be
run on a large number of heterogeneous devices. This paper shows how
this library can tackle the second one, as it describes the usage of the
run-time code generation (RTCG) feature of the library to write a per-
formance portable version of a parallel code. This performance portable
version has the ability to adapt automatically to any device.
The paper focuses in the matrix multiplication algorithm as a case study.
The adaptability of the resulting implementation relies on the tuning of
a dozen of parameters. The search of the best values for these parameters
is guided by a genetic algorithm where each individual is evaluated using
its execution time.
The performance of this implementation has been compared to two state-
of-the-art OpenCL adaptive implementations of the matrix product,
namely, clBLAS and ViennaCL. The kernels used by clBLAS can be
adapted to the platform where they are going to be run by means of a
prior profiling. The ViennaCL implementation can be tuned through a
set of parameters, but their values are selected through an exhaustive
search. Except in a single test, where clBLAS takes the lead for a single
matrix size in an AMD GPU, our implementation systematically outper-
forms the other adaptive libraries in four platforms: an NVIDIA GPU,
an AMD GPU, a multicore Intel CPU and an Intel Xeon Phi accelerator.
The average speedup of our implementation respect to clBLAS and Vi-
ennaCL is 1.74 and 1.44, respectively. In addition, on average our genetic
search is 1.18 times faster than the clBLAS profiling and 160 times faster
than the exhaustive search implemented by ViennaCL, and it finds faster
versions of the matrix multiplication.

Keywords: GPGPU, performance portability, OpenCL

2 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

1 Introduction

One of the most important problems that hamper the wider use of heterogeneous
systems is the current poor portability of the codes for these devices. The truly
portable programming of heterogeneous system needs: (1) a unified program-
ming language for any kind of device and, (2) a method to achieve performance
portability. OpenCL [1] solves the first challenge as it enables the programming
of a wide variety of devices. The second requirement, performance portability,
has been widely addressed in the bibliography. For example, the framework [2]
separates functionality from implementation details using specialized functions
that allow to explore a great variety of implementations and to select the opti-
mal one for a certain platform. VForce [3] provides performance portability in a
transparent way across different kinds of accelerators to programs written in a
domain-specific language focused on image and signal processing.

Performance portability can also be achieved through iterative processes.
For example, [4] uses iterative compilation to select the optimal parameters for
GPU codes according to a set of pre-defined, parameterized templates for linear
algebra problems. An auto-tuning approach that selects the best execution plan
for the SkePU skeleton programming framework in multi-GPU systems based on
predictions is presented in [5]. The PARTANS framework [6], which is specifically
designed to express stencil computations in multi-GPU systems, includes auto-
tuning mechanisms to optimize this kind of computations.

Focusing on OpenCL, uCLbench [7] characterizes the properties of the de-
vice and the OpenCL implementation where the code is intended to run, seeking
to guide programmers in the hand-tuning of their codes. The main changes
required to port the performance of OpenCL codes that have been tuned for
GPUs to CPUs are discussed in [8][9]. GLOpenCL [10] is a development frame-
work consisting of a compiler and a runtime library that supports OpenCL on
different types of multicores. OCLoptimizer [11] searches optimal unroll factors
for OpenCL kernels based on compiler directives and a configuration file. Fi-
nally, Dolbeau et al [12] discuss the performance that the same OpenCL code
achieves on different platforms. They use the CAPS compiler to generate auto-
tuned OpenCL code.

The Heterogeneous Programming Library (HPL) [13] is a C++ framework
that improves the programmability of heterogeneous systems by combining spe-
cial data types and an embedded language to write kernels, which express the
parallelized computations to run in the devices. HPL is a unified approach for
programming heterogeneous systems as it uses as backend OpenCL, so that its
kernels can run on any device. It also provides appropriate tools to provide per-
formance portability, as the combination of its embedded language and C++ to
write the kernels enables run-time code generation (RTCG), which can be used
to write self-adaptive generic kernels. While other tools enable RTCG using sim-
ilar mechanisms [14][15], they only target regular CPUs, and therefore they have
sought other purposes. This way, this paper explores the development of kernels
with portable performance by combining C++ and the HPL embedded language
to generate parameterized generic kernels. The configuration parameters of each

Title Suppressed Due to Excessive Length 3

kernel change certain aspects of how its code is optimized, and they are adjusted
using a genetic algorithm through an iterative process. The performance of the
kernel generated using each combination of values of its parameters is evaluated
by executing the code. The configuration parameters select optimized unroll fac-
tors for some loops, an optimized granularity for the work performed by each
instance of the kernel, the base version of the algorithm used, which data struc-
tures are stored in local memory, the best loop ordering and the best vector size.
The performance of our kernels is compared to two state-of-the-art adaptive im-
plementations, clBLAS and ViennaCL. These two implementations were chosen
because (a) they use OpenCL, and thus, they target the same range of plat-
forms as HPL, and (b) they provide adaptive mechanisms to enable performance
portability. Our study also covers the OpenCL-based clMAGMA library [16], as
it relies on clBLAS for its OpenCL BLAS routines.

Our matrix multiplication implementation is based on existing implementa-
tions for NVIDIA GPUs [17], AMD GPUs [18], and any kind of devices support-
ing OpenCL [19]. This latter implementation also enables performance portabil-
ity. Our implementation uses not only similar techniques to those introduced in
these previous works but also new ones. As a consequence, our implementation
turns out to be more effective that those previous ones.

The rest of the paper is organized as follows. Section 2 briefly introduces
the HPL library. Section 3 explains how RTCG can be used in HPL to write
parameterized generic kernels. Section 4 focuses on the case study, the matrix
multiplication. Section 5 explains the method derived to select an optimized set
of values for the configuration parameters of the kernel using iterative optimiza-
tion. Section 6 shows the experimental results and Section 7 concludes.

2 The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL), which is publicly available
at http://hpl.des.udc.es, intends to improve the programmability of het-
erogeneous systems while providing portability through an approach where the
computational kernels that exploit heterogeneous parallelism are written in a
language embedded in C++. This characteristic enables run-time code genera-
tion (RTCG), which is a powerful tool to provide performance portability, as we
will see through this paper. HPL provides portability because OpenCL is the
intermediate representation (IR) it currently generates, thus this library targets
the same range of devices supported by OpenCL.

The HPL library supports the same programming model as CUDA and
OpenCL. Its hardware model is composed by a host equipped with a standard
CPU and memory, with a number of computing devices attached. The host runs
the sequential parts of the code, while the devices run the parallel parts. Each
device has processors that execute SPMD parallel code on data present in the
memory of their device. As in OpenCL or CUDA, we can create groups of threads
that can be synchronized through barriers and share a small scratchpad memory.

4 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

The memory model distinguishes the same kinds of memory as OpenCL
(global, local, constant and private) and with the same properties. As kernels can
only work with data available in the devices, data must be transferred between
host and devices, but this process is totally automated by the library.

Several instances of each kernel, or work-items using OpenCL terminology,
can be executed in parallel, each instance being univocally identified. The num-
ber of instances of the kernels and their identifiers are defined by a global domain
of non-negative integers with up to 3 dimensions. This way, instances are identi-
fied inside this domain with tuples of global ids. In turn, these instances can be
associated in groups. With this purpose, we can define local domains as equal
portions of the global domain. Instances are identified inside its group using
tuples of local ids. Now, Section 2.1 explains how to program using HPL.

2.1 Programming using HPL

The library provides three main components to the programmers:

– A template class Array to define both the variables to be transferred between
the host and the devices, and the variables that are local to the kernels.

– The kernels, which are functions written in a language embedded in C++.
This embedded language is an API in C++ consisting of data types, func-
tions, macros and predefined variables.

– An API that will be used by the code to inspect the devices available in a
given platform and to order the execution of the kernels.

All the kernel variables must have type Array<type, n [, memFlag]>, which
represents an n-dimensional array of elements of a C++ type, or a scalar for
n=0. Scalars and vectors can also be defined with special data types like Int,
Float, Int4, Float8, etc. The optional memFlag can specify one of the kinds of
memory supported (Global, Local, Constant or Private). The arrays passed
as parameters to the kernels must be declared in the host using the same type.
These variables are initially stored in the host memory, but when they are used as
kernel parameters they are automatically transferred to the device. The outputs
are also automatically transferred to the host when needed.

HPL kernels also require that their control flow structures are written using
special keywords. The embedded language uses the same constructs as C++ but
their name finishes with an underscore (if_, for_, . . .). Also, the arguments to
for_ loops are separated by commas instead of semicolons. The library provides
an API based on predefined variables to obtain the global, local and group
identifiers as well as the sizes of the domains and numbers of groups. For example,
idx provides the first dimension of the global identifier of a work-item, while
szx provides the global work size for that dimension. If we add the l prefix to
these keywords we obtain their local counterparts, and if we replace the letter x
with y or z, we obtain the same values for the second and the third dimensions
respectively.

Kernels are written as regular functions or functors that use these elements
and whose parameters are passed by value if they are scalars, and by reference

Title Suppressed Due to Excessive Length 5

Listing 1.1. SAXPY HPL code
void saxpy(Array <float ,1> y, Array <float ,1> x, Float a) {

y[idx] = a * x[idx] + y[idx];
}

int main(int argc , char *argv) {
Float a;
Array <float , 1> x(1000) , y (1000);
//x, y and a are filled in with data (not shown)
eval(saxpy). global (1000). local (10)(y, x, a);

}

otherwise. The saxpy routine in Listing 1.1 implements using this language the
SAXPY (Single-precision real Alpha X Plus Y) vector BLAS routine, which
computes Y = a × X + Y . In this kernel, each instance idx computes a different
position of the result y[idx].

Regarding the host interface, its most important component is the function
eval, which requests the execution of the kernel f with the syntax eval(f)(arg1,
arg2, ...). The execution of the kernel can be parameterized by inserting spec-
ifications, in the form of methods, between eval and the argument list. For
example, the global and the local sizes can be specified using methods called
global() and local() respectively. This way, the saxpy routine is invoked in
Listing 1.1 with a global domain of 1000 elements and a local domain of 10
elements.

3 Performance portability in HPL

HPL generates the internal representation (IR) of its kernels by running them as
regular code in the host when an eval requests their execution for the first time.
Subsequent requests just reuse the IR generated the first time, which is stored in
an internal cache, unless this cache is erased in order to force the regeneration of
the IR. The HPL macros and data types capture all the expressions in which they
are involved during the execution of the kernel in the host, allowing the runtime
to generate the associated IR. However, regular C++ sentences found within
the kernel are simply executed and they do not appear in the resulting IR. This
characteristic enables RTCG, which can be used, for example, to choose between
different versions of the same code, or to parameterize the generation of code. The
method proposed in this paper combines RTCG and generic kernels to generate
different versions of the same kernel based on different input parameters. In this
context, generic kernels are those written for generic values of some parameter,
such as the granularity, which can be adjusted at run-time.

First, we describe the strategy we have followed to parameterize the kernels.
We have defined the HPL kernels using functors, so that for each kernel we

6 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Listing 1.2. MxV code: original version
1 class MxV {
2 void operator ()(Array <float ,2> a, Array <float ,1> x,
3 Array <float ,1> y)
4 {
5 Int k;
6 for_(k=0, k<N, k++)
7 y[idx] += (a[idx][k] * x[k]);
8 }
9 };

10 int main (...) {
11 // Declare and initialize ax ,xv and yv Arrays
12 MxV mxv
13 eval(mxv). global (M)(av , xv , yv);
14 }

define a class with the name of the kernel that defines the operator(). The
arguments and the body of this method are the arguments and the body of the
kernel, respectively. The parameters that will be used to parameterize the kernel
at runtime, are defined as properties of this class, thus, they can be accessed
from the operator() method. Besides, they can be set from the host before the
generation of the kernel code is initiated by an eval invocation.

Based on a set of parameters, we have used RTCG and generic kernels to
generate codes that at the same time: (1) apply the unrolling technique to one
or several loops using a given unroll factor, (2) select the best granularity of
the computation performed by each instance of the kernel, (3) select the most
suitable variant of an algorithm depending on the device that will be used, (4)
decide which data structures are stored in local memory, (5) select an optimized
loop order, and (6) choose an optimized vector size in the vectorized portions
of code. The methods used to introduce these features in the kernels are now
explained in turn.

Unrolling: Loop unrolling is a popular optimization technique whose main
benefits are that it unveils instruction level parallelism, minimizes branch penalty
and reduces the number of control instructions executed. Loop unrolling using
arbitrary unroll factors can be introduced in HPL kernels using RTCG. The C++
code will be used in conjunction with the embedded language to generate the
unrolled loops. Let us see an example starting from the matrix-vector product
(MxV) code shown in Listing 1.2. This code defines the HPL kernel in lines 2-8.
Each instance of the kernel processes one row from the input matrix, thus a
single loop is required to multiply each element of the row by the corresponding
element of the input vector.

Listing 1.3 shows an unrolled version of the kernel. The loop between lines
6-9 is an unrolled version of the original loop, thus, its stride is now the unroll
factor (uf). The body of the loop is replicated uf times by a native C++ loop

Title Suppressed Due to Excessive Length 7

Listing 1.3. MxV code: unrolled version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x,
3 Array <float ,1> y)
4 {
5 Int k;
6 for_(k=0, k <= (N - uf), k += uf) {
7 for(aux =0; aux <uf; aux ++)
8 y[idx] += (a[idx][k+aux] * x[k+aux]);
9 }

10 for_(k,k<N,k++)
11 y[idx] += (a[idx][k] * x[k]);
12 }
13 }
14 int main (...) {
15 ...
16 MxV mxv
17 mxv. set_uf (unrolling_factor);
18 eval(mxv). global (M)(av , xv , yv);
19 }

(lines 7-8). As the number of iterations of the loop N may not be a multiple of
uf, to prevent out of range array accesses, the loop limit is N-uf. If there are
some iterations left after that loop, they are processed without unrolling by the
code in lines 10-11. The value for the unroll factor is passed to the kernel from
the main procedure by setting the appropriate attribute of the class that defines
the kernel (line 17).

Granularity: HPL creates one instance (or thread in HPL terminology) of
the kernel for each point of the global domain. The optimal amount of work
performed by each thread must be tuned for each platform in order to maximize
the performance. For example, CPUs tend to be more effective using threads with
larger workloads than GPUs. It is interesting to be able to tune that granularity
at run-time depending on the type of device we are using. We can do that in
HPL by changing the number of points in the global domain. For example, in
our MxV code, the number of threads created is equal to the number of rows
of the input matrix, thus, each thread processes one row of this matrix. If we
reduce the number of threads, each thread should process several rows from the
input matrix. This modification requires that the code is rewritten for a generic
grain size, the grain size being in this case the number of rows of the input
matrix processed by each thread. In our proposal, the rows are distributed using
a block-cyclic policy, thus, grains of bszx rows are assigned cyclically to the
threads available. An optimized value of bszx is found for each device. In the
MxV code, this block size will not have a big influence in the performance, but

8 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Listing 1.4. MxV code: auto-adjustable granularity version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x,
3 Array <float ,1> y)
4 {
5 Int ii , i, ilim , k;
6 for_(ii = idx*bszx , ii < M, ii += szx*bszx)
7 for_(i = ii ,i < min(xx+bszx , M), i++)
8 for_(k = 0, k < N, k++)
9 y[i] += a[i][k] * x[k];

10 }
11 }
12 int main (...) {
13 ...
14 int szx = <# threads of the global domain >;
15 int bszx = <block size >;
16 ...
17 eval(mxv). device (dev). global (sz_x)(av , xv , yv);
18 }

in other problems some values of bszs may benefit locality or coalescing, so, they
will have a big impact in the performance.

In order to implement this distribution of the rows, the MxV kernel code must
be changed to add two outer loops that process the blocks of bszx rows assigned
to each thread. Loop headers in lines 6-7 of Listing 1.4 select the appropriate
set of rows to be processed by each thread following a block-cyclic policy. The
resulting kernel does not use RTCG but it is written in a generic way, so that if
different values are provided for the size of the global domain and the block size,
the granularity of the work performed by each thread is automatically adjusted
at run-time.

Algorithm selection: The type of device used for a kernel execution is
known at run-time. HPL can use this information to choose between different
versions of the same algorithm, or portions of the algorithm, using RTCG. For
example, a version that exploits local memory is good for GPUs but it may
introduce unnecessary synchronization points in CPUs. The best strategy to
divide the work among the threads varies depending on the type of device.
RTCG can be used to select the appropriate base version or implementations of
portions of the algorithm at run-time. Figure 1.5 shows the skeleton of a MxV
vector kernel where a different variant of the algorithm is selected depending on
the type of device. In the same vein, the size of the problem can advise the usage
of different base versions of the algorithm.

Local memory: The usage of local memory is crucial for some devices like
GPUs. We propose a technique to dynamically adjust the usage of local memory
in HPL kernels. The idea is to write kernels where one or several data structures

Title Suppressed Due to Excessive Length 9

Listing 1.5. MxV code: algorithm version selection
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x,
3 Array <float ,1> y)
4 {
5 if (device == CPU) {
6 // Version better suited to CPUs
7 } else {
8 // Version better suited to other devices
9 }

10 }
11 }

may optionally be stored in local memory or not. For example, in the MxV code,
we can choose vector x for this purpose. A boolean parameter copyX will be set
in the host to indicate whether we want to place that array in local memory.
Listing 1.6 contains the MxV kernel modified to implement this behavior. The
kernel uses RTCG to make the copy of x to local memory if copyX is activated,
see lines 7-11. When the computation is done, the global array x or its local copy
will be used depending on the value of the copyX parameter in line 13.

Loop interchange and instruction scheduling: Loop interchange, when
legal, can have a big impact on the performance of a kernel. For example,
it changes the order in which kernels traverse n-dimensional structures. Some
traversal orders can reduce the number of required simultaneous registers or
favour locality or automatic vectorization detection. Traditionally, the best loop
order is selected by the programmer or optimized at compile-time. In HPL,
RTCG capabilities can be used to change the loop order at run-time.

The code in Listing 1.7 shows an example of how this technique is applied
to the matrix-vector product HPL kernel. In the original version presented in
Listing 1.2, each thread performs the multiplication of one row of matrix a and
the vector x. Let us recall that each thread processes the multiplication of M/szx
consecutive rows of matrix a by vector x. The product within each thread can
be done using the traditional order, where matrix a is accessed by rows, or it
can be done by traversing per columns the chunk of M/szx rows of a processed
by each thread. The order can be changed by swapping the two loops in the
kernel. In HPL, this code transformation can be done at run-time using a new
technique based on indirections. Arrays init, e and s have one position per loop
(2 in the example) containing the initialization, limit and step of the counters
of each one of the actual loops that we want to reorder. This way, we call actual
loop j the one whose data is stored in the j-th position of these vectors. The
loops with indices c[0] and c[1] are just container loops where the real loops
are placed. The loop order can be changed modifying the contents of arrays o
and p. This way, the number of the actual loop j to be implemented by the
container loop, i, with index c[i] is stored in o[i]. Also, the references inside

10 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Listing 1.6. MxV code: local memory usage
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a,
3 Array <float ,1> x, Array <float ,1> y,
4 Array <float ,1,Local > lx)
5 {
6 Int k;
7 if(copyX) {
8 for_(k=lidx , k<N, k+= lszx)
9 lx[k] = x[k];

10 barrier (LOCAL);
11 }
12 for_(k=0, k<N, k++)
13 y[idx]+=a[idx][k]*(copyX ? (Float)lx[k] : (Float)x[k]);
14 }
15 }
16 int main (...) {
17 ...
18 eval(mxv). device (dev). global (M). local(lsz_x)(av ,xv ,yv ,lxv);
19 }

the loops have indexing functions that depend on the indices of the container
loops, c[i]. Each p[j] contains the index of vector c that implements the actual
loop j, that is, whenever o[i]=j, then p[j]=i. This way, any reference to the
indexing variable of the actual loop j in the original code can be systematically
replaced by c[p[j]], ensuring that the appropriate loop index will be used
no matter which the loop ordering chosen. In this example, the instruction in
line 21 requests that the container loop 0 (c[0]) implements the actual loop 1
(o[0]=1). Similarly, the instruction in line 22 configures the container loop 1
(c[1]) so that it implements the actual loop 0, (o[1]=0). Regarding the p array,
p[o[0]], which is p[1] in this order, points to the index of container c[0], and
p[o[1]], which is p[0] in this order, points to the index of c[1]. These values
give place to the access per columns, while if arrays o and p are set to their
complementary values, they would give place to an access per rows.

This scheme can be generalized for any arbitrary number of loops. Notice
that some loop interchanges may be illegal. Thus, the programmer is responsible
for checking the legality of the orders tried or at least, for enumerating the set
of legal orderings.

The loops interchanged in this example are HPL for_ loops (lines 9-10).
Thus, they will give place to for loops in the generated OpenCL kernel. If in this
example, for_ loops are transformed into for loops, these loops will be executed
during the HPL code generation process, which will give place to a fully unrolled
version of the original loop nest. In addition array c should be transformed into
a native C++ array. In this case, the loop interchange technique turns into a

Title Suppressed Due to Excessive Length 11

Listing 1.7. MxV code: version with interchangeable loops
1 class MxV { // Other portions of the class have been elided
2 int init [2]={0 ,0}; int e[2]={M/szx ,N}; int s[2]={1 ,1};
3 int o[2], p[2]; // initialized by set_order
4 void operator ()(Array <float , 2> a, Array <float , 1> x,
5 Array <float , 1> y)
6 {
7 ...
8 Array <int , 1, Private > c(2);
9 for_(c[0]= init[o[0]] ,c[0]<e[o[0]] ,c[0]+=s[o[0]]) {

10 for_(c[1]= init[o[1]] ,c[1]<e[o[1]] ,c[1]+=s[o[1]]) {
11 y[idx *(M/szx)+c[p[0]]] +=
12 a[idx *(M/szx)+c[p [0]]][c[p[1]]] * x[c[p [1]]];
13 }
14 }
15 }
16 };
17
18 int main (...) {
19 ...
20 MxV mxv;
21 mxv. set_order (0 ,1); // sets o[0]=1 and p[o[0]]=p[1]=0
22 mxv. set_order (1 ,0); // sets o[1]=0 and p[o[1]]=p[0]=1
23 eval(mxv). global (sz_x)(av , xv , yv);
24 }

instruction scheduling technique, as different loop orders will give place to a
different order of the same sequence of instructions. This instruction scheduling
technique is applied to our matrix multiplication implementation.

Vectorization: Vectorization is another usually applied optimization tech-
nique. When heterogeneous systems are considered, selecting the appropriate
vector size for each architecture is very relevant in terms of performance. HPL
allows to rewrite at run-time a vectorized kernel using arbitrary vector sizes. This
feature is accomplished by combining C++ templating and the AliasArray HPL
data type, which allows to access vectorially an existing HPL Array made up of
scalars.

The code in Listing 1.8 is a vectorized version of the original matrix-vector
product of Listing 1.2 that uses a generic vector type vectype. With this purpose,
the HPL kernel in lines 1-20 is templated for this vectype. On the host side, the
MxV class is properly instantiated using the desired vector type (line 23).

On the kernel side, matrix a and vector x are wrapped in lines 6-7 using the
AliasArray class provided by HPL which allows to access them vectorially with
a given vector size.

The loop in lines 12-14 is a vectorized version of the inner loop of the
original version of the algorithm. This loop generates a resulting vector tmp

12 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Listing 1.8. MxV code: vectorized version
1 template < typename vectype >
2 class MxV { // Other portions of the class have been elided
3 void operator ()(Array <float ,2> a, Array <float ,1> x,
4 Array <float ,1> y)
5 {
6 AliasArray <vectype , 2> a_vec(a [0][0]);
7 AliasArray <vectype , 1> x_vec(x[0]);
8 Array <vectype , 0> tmp;
9 Int k;

10
11 for_(i=0, i<(M/szx), i++) {
12 for_(k=0, k <=(N/ vectype :: veclen), k++){
13 tmp += (a_vec[idx *(M/szx)+i][k] * x_vec[k]);
14 }
15 for_(k=0, k< vectype :: veclen , k++){
16 y[idx *(M/szx)+i] += tmp[k];
17 }
18 }
19 }
20 };
21 int main (...) {
22 ...
23 MxV <vectype > mxv;
24 eval(mxv). global (M)(av , xv , yv);
25 }

with vectype::veclen positions. Finally, the values of tmp are accumulated in
y[idx*(M/szx)+i] by the loop in lines 15-17. This vectorization technique is
applied to our matrix multiplication implementation.

4 Case Study: Matrix Multiplication

Matrix multiplication is a time-consuming operation that is implemented by a
wide range of parallel libraries. As it is an extensively studied and important
problem, we have generated a highly optimized HPL implementation of this al-
gorithm. Our implementation has several parameters that can be tuned through
a genetic search guided by the kernel execution time.

Our performance-portable HPL kernel implements the C = A×B operation.
The code has been written in such a generic way that either A or B or both can
be either directly loaded in private memory from global memory, or previously
copied to local memory to optimize these further loads into private memory.
Moreover, thanks to the aforementioned RTCG capabilities of HPL, it is possible
to select the most appropriate combination of usage for both kinds of memory
depending on the device selected at run-time. In addition, the granularity of

Title Suppressed Due to Excessive Length 13

Name Explanation
szy # of rows of global domain
szx # of columns of global domain
lszy # of rows of local domain
lszx # of columns of local domain
bszy # of rows of each block of C calculated by one thread
bszx # of columns of each block of C calculated by one thread
tW Tile width to distribute the work among work groups
uf Unroll factor to be applied over the tile width loop
copyA Local memory copy flag for matrix A

copyB Local memory copy flag for matrix B

vA Vector size for copying matrix A from global to local memory
vB Vector size for copying and/or manipulation of matrix B

vC Vector size for copying and/or manipulation of matrix C

order Order of the three innermost nested loops

Table 1. Parameters of the matrix multiplication algorithm

the work to be performed by each thread can be adjusted by changing the
global domain size. The size of the local domain can be changed depending
on the capabilities of the device, and, within each thread, the tiling technique is
applied. The inner loops of the algorithm are fully unrolled and the instructions
are reordered using the instructions scheduling technique. Finally, this inner code
is vectorized for a generic vector type that can be configured at run-time. All
these optimizations give place to a set of parameters that can be tuned for each
device at runtime and that are summarized in Table 1.

5 HPL portable kernels through iterative optimization

The search of an optimized set of parameter values for the kernel is performed
using an iterative optimization process guided by a Genetic Algorithm (GA).
Concretely, we have built the iterative search on top of the sequential version of
the GAlib genetic algorithm package [20]. The chromosomes of our GA, which are
potential solutions to our problem, have one gene per configuration parameter of
the kernel. The initial population of the algorithm is composed of a configurable
number of individuals that have been fixed by experimentation. The individuals
and chromosomes of the initial population are randomly generated. Each indi-
vidual generates a different version of the kernel using the values selected for
each configuration parameter. These versions are evaluated using their fitness
function, which is its execution time.

The minimum execution time obtained by a member of the population is used
to decide whether the search must finish. The condition for this is that the fitness
function (the execution time) has not improved for five generations. When this
happens, the chromosomes that provided the best solution are used to generate

14 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

an optimized version of the kernel. If the condition has not been reached, a new
generation of individuals is generated. This offspring is created starting from
the best individuals of the previous generation, and using mechanisms such as
crossover and mutations. The process is repeated until the fitness function has
not improved for five generations.

6 Experimental results

In this section the performance and the search time of our adaptive implemen-
tation of the matrix multiplication is evaluated for different problem sizes, and
compared with other approaches, in four very different platforms:

– CPU: A dual-socket system with two Intel Xeon E5-2660 Sandy Bridge with
eight 2.2Ghz cores and Hyper-Threading (8 × 2 threads per processor, for
a total of 32) and 64 GB of RAM. Intel OpenCL driver version 1.2-4.5.0.8.
Single-precision theoretical peak performance of 563 GFLOPS.

– Nvidia: An NVIDIA Tesla K20m with Kepler GPU architecture and 5 GB
GDDR5. NVIDIA OpenCL driver version 340.58. Single-precision theoretical
peak performance of 3524 GFLOPS.

– AMD: An AMD FirePro S9150 with Hawaii GPU architecture and 16 GB
GDDR5. AMD OpenCL driver version 1702.3. Single-precision theoretical
peak performance of 5070 GFLOPS.

– Accelerator: An Intel Xeon Phi 5110P with sixty 1.053GHz cores with 8 GB
of RAM. Intel OpenCL driver version 1.2-4.5.0.8. Single-precision theoretical
peak performance of 2022 GFLOPS.

The test performs the multiplication of two square matrices of single-precision
floating point values taking into account four different matrix sizes, 1024×1024,
2048 × 2048, 4096 × 4096 and 8192 × 8192. All test programs were compiled us-
ing g++-4.7.2. Also, in order to assess the quality of our approach, the perfor-
mance of our HPL implementation tuned by means of a genetic search process
is compared to the performance of two OpenCL state-of-the-art implementa-
tions, namely clBLAS 2.4 [21] and ViennaCL 1.5.1 [19]. We have selected these
implementations because HPL is also currently based on OpenCL, they can be
executed in the same range of platforms as our HPL adaptive code, and they also
support some kind of adaptive behavior depending on the underlying hardware.
We now briefly describe these libraries.

First, clBLAS is the implementation used by AMD in its clMath suite and
thus it is the official BLAS library in the AMD platform. It includes a profiling
tool that queries some of the properties of the platform where the matrix mul-
tiplication will be run. This information is used to select some candidate values
for parameters such as the granularity of the work, both group and thread-level
tile widths, and vector lengths, and to decide whether or not local memory is
used. Using these ranges of values, the tool generates a set of representative
kernels, which are run for different problem sizes and it chooses the best one as
the single optimized version for the platform. Originally, the tool only supports

Title Suppressed Due to Excessive Length 15

Platform Size Best kernel performance Speedup
Execution time (GFLOPS) clBLAS ViennaCL

CPU

1024 6.75 ms (318.00) 2.12 1.34
2048 56.45 ms (304.33) 1.92 1.33
4096 568.52 ms (241.75) 2.35 1.11
8192 4768.57 ms (230.57) 2.57 1.13

Nvidia

1024 2.22 ms (969.52) 1.53 1.05
2048 17.19 ms (999.64) 1.47 1.00
4096 133.89 ms (1026.54) 1.55 1.02
8192 1069.18 ms (1028.37) 1.55 1.03

AMD

1024 1.01 ms (2126.22) 2.50 2.07
2048 6.53 ms (2630.91) 1.35 1.28
4096 63.49 ms (2164.73) 0.93 1.06
8192 839.19 ms (1310.21) 1.19 1.10

ACC

1024 7.43 ms (288.91) 1.81 2.08
2048 44.38 ms (387.11) 1.70 2.22
4096 350.95 ms (391.62) 1.54 2.17
8192 3213.56 ms (342.15) 1.82 2.02

Table 2. Speedups achieved by best versions found

GPU profiling. We have modified it to be able to profile also the hardware of
the rest of our testing platforms.

The ViennaCL implementation has several parameters that can be tuned
for each platform. The latest distributions of ViennaCL, from 1.6.2 on, provide
heuristically tuned values of these parameters for some of these platforms, but
they deliver bad performance compared to our implementation. Previous ver-
sions of ViennaCL, such as 1.5.1, contained an auto-tuning tool that performs
an exhaustive search for the values of these parameters, within a heuristically
defined vast range, guided also by kernel execution time. On average, the per-
formance of ViennaCL using this auto-tuner is 5 times the performance using
the heuristically selected values, but on exchange, it requires a very large search
time. The performance results reported in this work for ViennaCL are those
resulting of this exhaustive search.

Table 2 shows the performance results for the three implementations on the
four tested platforms. The third column contains the execution time in millisec-
onds and the performance measured in GFLOPS of the best kernel found by our
genetically tuned HPL implementation. The fourth and fifth columns shows the
speedup achieved with respect to the clBLAS and ViennaCL implementations.
Figures 1.a) to 1.d) compare the performance in GFLOPS of clBLAS and Vien-
naCL to that of our implementation for each problem size and platform. Let us
recall that the kernels of all the implementations have been previously adapted
to the underlying hardware by means of their respective profiling and tuning
procedures. The results show that our implementation outperforms these two
implementations for all matrix sizes and on the four platforms with the sole ex-

16 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

1024 2048 4096 8192
0

50

100

150

200

250

300

350

Matrix sizes

G
F

L
O

P
/s

clBLAS

ViennaCL

HPL+GA

1024 2048 4096 8192
0

200

400

600

800

1000

1200

Matrix sizes

G
F

L
O

P
/s

clBLAS

ViennaCL

HPL+GA

a) CPU b) Nvidia

1024 2048 4096 8192
0

500

1000

1500

2000

2500

3000

Matrix sizes

G
F

L
O

P
/s

clBLAS

ViennaCL

HPL+GA

1024 2048 4096 8192
0

50

100

150

200

250

300

350

400

450

Matrix sizes

G
F

L
O

P
/s

clBLAS

ViennaCL

HPL+GA

c) AMD d) ACC

Figure 1. Performance in GFLOPS of clBLAS, ViennaCL and HPL best versions

ception of matrix multiplication of size 4096 in the AMD platform. In this case,
our HPL implementation is beaten narrowly by the clBLAS implementation.
The average speedup of our approach is 1.74 with respect to clBLAS and 1.44
with respect to ViennaCL. Compared to clBLAS, our implementation achieves
a peak speedup of 2.57 in the CPU platform for the 8192 size. The peak speedup
with respect to ViennaCL is 2.22 and it is achieved in the ACC platform for the
2048 size. All the comparisons were done against the corresponding optimized
versions generated by both clBLAS and ViennaCL for each different problem
size. These best-kernels are, on average, 12 times faster than those found in [22].
This improvement is a consequence of the application of new techniques to gen-
erate a performance-portable code and some generic optimizations applied to
the matrix multiplication algorithm.

Table 3 shows the best values of the parameters of the HPL generic matrix
multiplication kernel found by the genetic algorithm. These parameters have
been explained in Table 1. The Table shows that the values selected for each
platform and for each problem size are different, and they are difficult to predict
using a single general heuristic. A pattern can be observed in the values taken

Title Suppressed Due to Excessive Length 17

Device Size (szx,szy) (lszx,lszy) (bszx,bszy) (tW,uf) (vA,vB,vC) copy (A,B) order

CPU

1024 (256,64) (8,64) (16,4) (32,1) (8,8,8) (2,0) 201
2048 (512,128) (8,128) (16,4) (32,1) (8,8,8) (2,0) 201
4096 (1024,256) (2,256) (16,4) (256,8) (16,16,16) (1,0) 012
8192 (2048,512) (32,32) (16,4) (32,4) (16,16,16) (2,0) 201

Nvidia

1024 (128,256) (2,64) (4,8) (32,2) (2,4,4) (2,0) 210
2048 (512,256) (4,64) (8,4) (256,4) (2,4,4) (2,0) 102
4096 (512,512) (16,16) (8,8) (32,2) (2,2,2) (2,0) 102
8192 (1024,1024) (2,128) (8,8) (32,2) (4,8,8) (2,0) 210

AMD

1024 (256,128) (4,32) (8,4) (128,1) (4,8,8) (2,0) 102
2048 (256,256) (1,128) (8,8) (256,2) (4,8,8) (2,0) 120
4096 (512,512) (4,16) (8,8) (32,2) (4,8,8) (2,0) 012
8192 (1024,1024) (1,128) (8,8) (32,4) (4,8,8) (2,0) 012

ACC

1024 (256,64) (1,16) (16,4) (8,2) (1,16,16) (0,0) 120
2048 (256,128) (1,8) (16,8) (512,8) (8,16,16) (0,0) 120
4096 (2048,256) (16,32) (16,2) (32,1) (8,16,16) (2,0) 201
8192 (4096,512) (16,16) (16,2) (32,1) (16,2,2) (2,0) 021

Table 3. Configuration of the best versions found using our approach

by some parameters within the same platform, but they cannot be easily found
a priori.

Table 4 contains the time consumed by the tuning procedures conducted by
our genetic algorithm, the clBLAS profiler and the ViennaCL auto-tuner. On
average, our genetic search is 1.18 times faster than the clBLAS profiler. For
the CPU and ACC platforms, the sum of times consumed by our genetic search
for each matrix size is competitive in relation to that consumed by the clBLAS
profiler. In the Nvidia and AMD platforms, both composed of GPUs, the clBLAS
search procedure is quite faster, which is understandable taking into account that
it is specifically directed to this kind of devices. The results also show that the
ViennaCL auto-tuner is 160 times slower than our genetic search procedure. This
large difference is undoubtedly due to the time-consuming exhaustive search
it conducts. As for the search times of our tool, despite covering much more
optimization parameters and techniques than [22], they are 2.57 times shorter
than those reported in [22].

7 Conclusions

We have presented a generic implementation of the matrix multiplication based
on RTCG techniques exploited thanks to the use of the HPL embedded language
for kernels. As a result, a dozen of parameters allow to tune this implementation
for the different platforms and problem sizes. The search of the best values for
these parameters is guided by a genetic algorithm where each individual is eval-
uated using its execution time. This implementation illustrates and proves the
effectiveness of a set of techniques to build a performance-portable implementa-

18 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Device Size Total tuning time (s)
GA clBLAS ViennaCL

CPU

1024 120.57

42947.26

32428.25
2048 339.99 60438.13
4096 1729.80 500775.18
8192 19286.90 4186086.80

Nvidia

1024 242.04

1225.53

18836.30
2048 331.40 38292.62
4096 4429.57 186041.36
8192 17127.50 1394675.71

AMD

1024 1579.74

5425.97

1911.00
2048 2422.34 6221.00
4096 4587.55 60595.37
8192 5792.07 > 3 days

ACC

1024 260.32

86501.20

121891.58
2048 915.69 211610.18
4096 4401.47 1145630.97
8192 31973.30 > 3 days

Table 4. Total times for tuning procedures

tion of any algorithm in HPL. They offer an alternative to complex auto-tuning
libraries or complex source-to-source compilation tools.

The performance of this implementation has been compared to two state-
of-the-art OpenCL adaptive implementations of the matrix product, namely,
clBLAS and ViennaCL. The kernels used by clBLAS can be adapted to the
platform where they are going to be run by means of a prior profiling. The Vi-
ennaCL implementation can be tuned through a set of parameters, but their
values are selected through an exhaustive search. Except in a single test, where
clBLAS takes the lead for a single matrix size in an AMD GPU, our implemen-
tation systematically outperforms the other adaptive libraries in four platforms:
an NVIDIA GPU, an AMD GPU, a multicore Intel CPU and an Intel Xeon Phi
accelerator. The average speedup of our implementation respect to clBLAS and
ViennaCL is 1.74 and 1.44, respectively. Compared to clBLAS, our implemen-
tation achieves a peak speedup of 2.57 in the CPU platform for the 8192 size.
The peak speedup with respect to ViennaCL is 2.22 and it is achieved in the
ACC platform for the 2048 size. In addition, on average our genetic search is
1.18 times faster than the clBLAS profiling and 160 times faster than the ex-
haustive search implemented by ViennaCL, and it finds faster versions of the
matrix multiplication.

As future work, we are planning to implement mechanisms that allow to au-
tomatically apply these techniques to any HPL code with a minimal intervention
by the programmer.

Title Suppressed Due to Excessive Length 19

Acknowledgements

This work is supported by the Ministry of Economy and Competitiveness of
Spain and FEDER funds of the EU (Project TIN2013-42148-P), and by the
Galician Government under the Consolidation Program of Competitive Refer-
ence Groups (ref. GRC2013-055). This work is also partially supported by EU
under the COST Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS). The authors are also members of the CAPAP-H5 net-
work, in whose framework the paper has been developed.

References

1. Munshi, A., Gaster, B., Mattson, T.G., Fung, J.: OpenCL Programming Guide.
Addison-Wesley Professional (2011)

2. Wernsing, J.R., Stitt, G.: Elastic computing: a framework for transparent,
portable, and adaptive multi-core heterogeneous computing. In: Proc. ACM SIG-
PLAN/SIGBED 2010 conf. on Languages, compilers, and tools for embedded sys-
tems. (2010) 115–124

3. Moore, N., Leeser, M., Smith King, L.: VForce: An environment for portable
applications on high performance systems with accelerators. J. Parallel Distrib.
Comput. 72(9) (2012) 1144–1156

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing 38(8) (Aug 2012) 391–407

5. Dastgeer, U., Enmyren, J., Kessler, C.W.: Auto-tuning SkePU: a multi-backend
skeleton programming framework for multi-GPU systems. In: Proc. 4th Intl. Work-
shop on Multicore Software Engineering. IWMSE ’11 (2011) 25–32

6. Lutz, T., Fensch, C., Cole, M.: PARTANS: An autotuning framework for sten-
cil computation on multi-GPU systems. ACM Trans. Archit. Code Optim. 9(4)
(January 2013) 59:1–59:24

7. Thoman, P., Kofler, K., Studt, H., Thomson, J., Fahringer, T.: Automatic OpenCL
device characterization: Guiding optimized kernel design. In Jeannot, E., Namyst,
R., Roman, J., eds.: Euro-Par 2011 Parallel Processing. Volume 6853 of Lecture
Notes in Computer Science. Springer-Verlag (2011) 438–452

8. Lan, Q., Xun, C., Wen, M., Su, H., Liu, L., Zhang, C.: Improving performance of
GPU specific OpenCL program on CPUs. In: Proc. 13th Intl. Conf. on Parallel
and Distributed Computing, Applications and Technologies (PDCAT’12). (2012)
356–360

9. Shen, J., Fang, J., Sips, H., Varbanescu, A.: Performance traps in OpenCL for
CPUs. In: Proc. 21st Euromicro Intl. Conf. on Parallel, Distributed and Network-
Based Processing (PDP 2013). (2013) 38–45

10. Daloukas, K., Antonopoulos, C.D., Bellas, N.: GLOpenCL: OpenCL support on
hardware- and software-managed cache multicores. In: Proce. 6th Intl. Conf. on
High Performance and Embedded Architectures and Compilers. (2011) 15–24

11. Fabeiro, J.F., Andrade, D., Fraguela, B.B., Doallo, R.: Automatic generation of
optimized OpenCL codes using OCLoptimizer. The Computer Journal 58(11)
(Nov 2015) 3057–3073

12. Dolbeau, R., Bodin, F., de Verdiere, C.: One OpenCL to rule them all? (2013)

20 Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

13. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting heterogeneous parallelism with
the Heterogeneous Programming Library. J. Parallel Distrib. Comput. 73(12)
(December 2013) 1627–1638

14. Beckmann, O., Houghton, A., Mellor, M., Kelly, P.H.J.: Runtime code generation
in C++ as a foundation for domain-specific optimisation. In: Domain-Specific
Program Generation, International Seminar, Dagstuhl Castle, Germany, March
23-28, 2003, Revised Papers. Volume 3016 of Lecture Notes in Computer Science.
Springer Verlag (2004) 291–306

15. Newburn, C., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S.D., Wang, Z.G.,
Du, Z., Chen, Y., Wu, G., Guo, P., Liu, Z., Zhang, D.: Intel’s array building blocks:
A retargetable, dynamic compiler and embedded language. In: 9th IEEE/ACM
Intl. Symp. on Code Generation and Optimization (CGO 2011). (2011) 224–235

16. Cao, C., Dongarra, J., Du, P., Gates, M., Luszczek, P., Tomov, S.: clMAGMA:
High performance dense linear algebra with OpenCL. In: International Workshop
on OpenCL (IWOCL). (2013) 13–14

17. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. IEEE Transactions on Parallel and Distributed Systems 23(11) (Nov 2012)
2045–2057

18. Matsumoto, K., Nakasato, N., Sedukhin, S.: Implementing a code generator for
fast matrix multiplication in OpenCL on the GPU. In: 2012 IEEE 6th Intl. Symp.
on Embedded Multicore Socs (MCSoC). (Sept 2012) 198–204

19. Tillet, P., Rupp, K., Selberherr, S., Lin, C.T.: Towards performance-portable,
scalable, and convenient linear algebra. In: 5th USENIX Workshop on Hot Topics
in Parallelism, Berkeley, CA, USENIX (2013)

20. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. (1996)
21. AMD: clBLAS. https://github.com/clMathLibraries/clBLAS (2015) [Online; ac-

cessed 17-May-2016].
22. Fabeiro, J.F., Andrade, D., Fraguela, B.B., Doallo, R.: Writing self-adaptive codes

for heterogeneous systems. In: Proc. 20th Intl. Conf. Euro-Par 2014 Parallel Pro-
cessing. (2014) 800–811

