
A high-performance framework for complex
decision support processes

Ate Penders
Thales Research&Technology,
Delft University of Technology

Email: ate.penders@d-cis.nl

Ana Lucia Varbanescu
University of Amsterdam

Email: a.l.varbanescu@uva.nl

Gregor Pavlin
Thales Research&Technology
Email: gregor.pavlin@d-cis.nl

Henk Sips
Delft University of Technology

Email: h.j.sips@tudelft.nl

Abstract—Many situations in the security domain require
decision-making based on complex data, i.e., many variables
which need to be taken into account before adequate decisions
can be made. For example, in a surveillance scenario, the size
and complexity of the area of interest, the mix of objects, and
the unexpected behavior of suspects are just a few examples of
complex variables to be analyzed in the process. Existing decision
support systems provide some analysis, but are typically limited
in the complexity they can handle. Therefore, users end up with
simplified models which often suffer in the accuracy of their
decisions and, ultimately, may lead to incorrect decisions. In
this work, we present a framework that can scale to cope with
the complexity and time requirements of real-world scenarios,
while remaining flexible to handle the ad-hoc adaptation to
the situation. We discuss the challenges and solutions for such
a scalable and flexible system, and validate it using a target
tracking scenario in urban environments of different sizes.

I. INTRODUCTION

Border security, maritime security, wildlife protection, or
search & rescue operations are examples of critical appli-
cations in the security domain. Situation assessment in the
security domain requires unstructured (big) data and complex
processes to be combined for decision making, which in turn
should lead to one or more simple and concrete actions and or-
ders, like ”apprehend suspect” or ”ignore, false alarm”. Ideally,
this translation of complex processes and data into actions is
performed by a (semi-)automated system for decision support.

The data in all applications in the security domain come
from some form of surveillance. The resources used for
surveillance (i.e., the sensors) and their availability are de-
pendent on the application: with border security, the presence
of security cameras can be expected, while search & rescue
operations often depend on human surveillance or cell towers.
Regardless of these differences, in all cases, the data read from
many relevant sensors, of different kinds, must be combined.
Reading relevant surveillance data is an essential part of
situation assessment. Furthermore, the data is unstructured,
heterogeneous, and can be very large in size. A further task
of the system is extracting and filtering the surveillance data
relevant for the decision making process.

The filtered set of surveillance data is used for further
analysis. For example, it can be used to create situation
awareness by using tracking algorithms that collect data of
specific objects over time and predict the most likely next
position of these objects. Such prediction is a complex and

Fig. 1: The pipeline of processes in a surveillance system, from
extracting the surveillance data from each of the S sensors to the
suggested actions based on the predicted movement of the N target
objects. This pipeline is executed for every time step.

time consuming task, requiring both historical data of the
object, if available, and information on the context of the
surroundings in which the object moves (e.g. road maps, traffic
information, road blockages) [5]. So another important task
of the system is the complex and time consuming analysis
process, or group of processes, that use the filtered set of
surveillance data to generate relevant information about the
target object, like its destination, potentially leading to one or
more concrete actions.

Figure 1 presents the sequence of the components required
for a decision support system for object tracking. The system,
which collects data from S sensors to track N objects, is
organized as a pipeline of processes, and suggests an action per
object, based on the surveillance data collected at a specific
time. The pipeline is executed at each time step; ideally, a
decision had been reached in all previous time steps before a
new step begins, a condition that limits the possible frequency
of the system. We note there are two iterative blocks in the
system. The first one iterates over the number of available
surveillance processes (S) to collect all the surveillance data
that can later be used by the tracking processes; the second
one is performing the tracking process and action suggestion
for each of the N tracked objects. Thus, the time step of the
system is at least Tseq , defined in Equation 1.

Tseq = Tcontext+S·Tsensor+N ·(Tpredict+Tvalidate+Taction)
(1)

As Tseq is the limiting factor for the speed of the decision
support system, the goal of this work is to minimize the
execution time of a single step, without limiting the generality
of the system. To do so, we propose a generic framework



for security applications, which can adapt to the type of
surveillance resources and decision-making scenarios. The
main requirements of the framework are: (1) minimize the
time per step, and (2) scale with both the number of sensors
and decisions to be made. Our approach is using an actor-based
approach to ensure flexibility and scalability,while employing
parallel processing to improve performance.

The remainder of this paper is structured as follows. In
Section II we introduce a motivating scenario to demon-
strate the requirements of a real surveillance application. In
Section III we present the common challenges of decision
making in security domain applications. We follow-up with the
design and implementation of our framework, as presented in
Sections IV and V, respectively. Section VI discusses the usage
of the framework, while Section VII discusses our preliminary
results. We conclude the paper in Section VIII.

II. MOTIVATING SCENARIO

Situation assessment is a combination of knowledge about
the environment, the whereabouts of the target (in case of
tracking), how the former affects the latter, and vice versa. All
this knowledge is specific to the desired type of assessment,
making support systems difficult to generalize.

Target tracking in urban environments is one example
of complex decision making, which contains many aspects
common to many situations in the security domain. Across this
paper, we use target tracking as a practical example to help
us illustrate the baseline requirements for a decision support
system.

In the scenario of target tracking in urban environments,
we are interested in the apprehension of the target by means
of blocking streets. The situation assessment therefore should
give insight in the required number of blockages, the impact
blocking the streets has on the ”normal” traffic, and the
availability of law enforcement in the area. The scenario is a
combination of separate complex processes: (1) prediction of
target movement, (2) traffic monitoring, (3) minimal blockage
determination, (4) impact estimation, and (5) law enforce-
ment localization. Each one of these five process consists
of one or more (sub)processes. For example, the prediction
of target movement has a prediction model that uses the
last position and direction to predict the next likely position;
observations from sensors are used to improve and validate
previous predictions, as well as adjust current predictions;
finally, the environmental context (e.g., road maps), is also
used to improve and validate predictions.

Target tracking is typically initialized by an operator, an
officer who gets the order to follow and apprehend a suspi-
cious person or vehicle. This request triggers the start of a
tracking process, which in turn triggers requests to sensors
(e.g., license plate recognition cameras) in a specific area.
The tracking algorithm, for example a particle filter [3][6],
periodically predicts all possible next positions. The prediction
is validated (and adjusted) when the sensors detect the object
of interest. In urban environments, but also in other situations,
the prediction can be further improved based on knowledge

Fig. 2: Scenario sequence for target tracking in urban environments.
(1) initiate tracking, (2) request sensors in area, (3) validate prediction
based on context, (4) new sensor for updated area, (5) report
predictions, (6) use context for decision proposal, and (7) suggest
action.

about the context (e.g. road maps, traffic, construction): the
target tracker sends its prediction to a context bank, which
adjusts the likelihood of these predictions based on a database
of context information. Based on the updated prediction the
tracker will update its request to sensors1. New predictions
are reported to the operator and/or a decision support module.
The decision support module is in place to assist the operator
in providing suggested actions for apprehending the target.
The target tracking terminates when a decision is made by the
operator or the target is lost (i.e. no observations are done by
any sensor for a long period of time, hence the predictions have
very low probability). Figure 2 shows a graphical illustration
of the described scenario.

III. CHALLENGES AND APPROACH

The usability of decision support frameworks in real-life
situations is often hindered by their performance, as they
become too complex to cope with decision taking in due time.
Our goal is to address this challenge at a structural level,
aiming to improve the per-step performance of data collection,
analysis, and decision making by design.

Consequently, we impose the processing time of the de-
cision taking pipeline (Figure 1) to be within given time
constraints, as seen in Equation 2, where T ∗ is the maximum
period between observations.

1The last position of the target with a radius of the maximum traveling
distance between two time-steps of the tracking algorithm plus some margin.



Tseq ≤ T ∗ (2)

Note that the actual time constraints are entirely dependent
on the situation. For example, for our target tracking in an
urban environment, if we want to track a car driving at an
average speed of 30 km/h and the data processing takes 10
minutes (that is, Tseq = 10min), the car could move 5
km away from the last known position, making any suspect
apprehension unfeasible. When the execution time is reduced
to Tseq ≤ 2min, the car only moves 1 km, making it still
possible for law enforcement to apply the suggested action,
and reducing the unpleasant consequences in the area. In a
scenario of wildlife tracking, the average speed of moving
objects is closer to 5 km/h, making the range of movement in
10 minutes roughly 800 meters; this is an acceptable range.
However, because the density of sensors covering the area
is likely to be much lower than in a city, chances are high
to miss the few available sensors. Again, reducing Tseq is
desired to decrease the chance of missing the important sensor
observations and with it increase the likelihood of success.

It is difficult to determine an acceptable threshold for the
interval of observation. In our experience so far, this threshold
is a combination of situation specific variables, like average
speed of the target object and density of the sensors in the
area, and possible/desirable decisions. Therefore, building a
framework where performance and scalability are addressed
by design, and can be further tuned by using a better compu-
tational solution, is the right way forward.

When analyzing the pipeline for decision support, we iden-
tify two types of tasks that are both time consuming and
involve large sets of data, and therefore may hinder processing
speed:

• sorting and filtering surveillance data, and
• analyze the surveillance data and produce relevant target

information.

For large-scale scenarios, like decision support for security
domains usually are, Tseq (see Equation 2) is rapidly increas-
ing since both S and N tend to grow. As increasing T ∗ is
not really an option for real-life situations, we conclude that
a sequential solution will not scale. Instead, we must reduce
Tseq .

To reduce the processing time of the data collection and
filtering, we distribute the workload, i.e., we move the sorting
and filtering closer to the physical location of the sensors,
allowing this iterative process to be done in parallel by the
sensors. This is possible because each sensor operates indepen-
dently, so the communication to and from the sensors can be
asynchronous. Distribution also allows us to efficiently handle
the dynamics in the scenario by connecting and disconnecting
to the relevant sensors and only using the data that is relevant
for the current situation. The distribution improves perfor-
mance, but introduces a new challenge: resource discovery -
i.e., determining which are the relevant sensors. We address
this additional challenge in the next section.

For the task of analyzing surveillance data and produc-
ing target information, synchronization between parts of the
analysis process is required, making it less suitable for a
distributed approach. Instead we apply parallelism to speedup
the task itself. For example, a tracking algorithm that needs
to predict the most likely next position of the object must
consider multiple options, for each option a number of steps
evaluate the options to determine its likelihood and finally the
different options are compared against each other. In between
the different steps (e.g. create new potential option, is this
option possible or block by construction, use surveillance
data to determine the current direction and compare against
this option) some or more synchronization is required but the
different options can be evaluated in parallel. Figure 3 shows
the setup of the process chain that uses the distribution of the
S sensors and a distribution for the N active object tracking.
Note that, for simplicity, this figure does not show the parallel
design of the analysis steps.

To summarize, with the new processing pipeline based on
parallel processing, Equation 2 is rewritten as Equation 3.

max(max
S

(Tsensor), Tcontext,max
N

(Tpredict))

+max
N

(Tvalidate + Taction) ≤ T ∗ (3)

Our work focuses on designing and implementing a generic
decision support framework able to handle such a hybrid
solution of distribution combined with parallel computing for
surveillance situations. In the following sections, we discuss
the framework’s requirements and specifications, its architec-
ture, and present a first implementation able to integrate and
interpret the data from the active sensors towards recommend-
ing a decision.

IV. FRAMEWORK DESIGN

Figure 3 presents the architecture of the proposed frame-
work. To allow our framework to run efficiently, we must make
sure that modules operate without fast processes suffering long
idle times due to slower processes. Therefore, our framework
uses asynchronous communication in a data-flow like model:
as soon as the data is available, it is further communicated
to the processing pipeline. With independent sensors, the lack
of ordering due to asynchronous communications poses no
challenges to consistency. Further, to handle the dynamic
nature of decision support systems and the distribution of
work, resource discovery and dynamic (dis)connecting of
resources is required (illustrated by the solid and dashed lines
in Figure 3).

A. Resource discovery and Dynamic (dis)connecting of re-
sources

The challenge of resource discovery is solved by introducing
a yellow pages service. As the name suggests, this service acts
the same as a lookup table to find addresses of the available
processes grouped on their type. When a process X (e.g. a
tracking process) needs data from a different type of process



Fig. 3: The multiple pipelines of processes in a surveillance system,
using our framework. The collection of surveillance data can run in
parallel with the execution of the prediction step; afterwards, only the
relevant sensors are connected to the validation step. These pipelines
are executed for every time step.

Y (e.g. sensor), X will use the yellow pages to discover and
localize the instances of Y and use the addresses information
to establish a communication link.

It is expected that the system will have many more sensor
processes available than the ones the tracking process is
actually interested in (i.e., those that are in the area of interest).
In our tracking example, a tracking algorithm is interested in
sensor data of red cars, but data from a sensor 300 miles
from the current position is irrelevant at this moment. As the
tracked object moves over time, previously irrelevant sensors
can suddenly become relevant and vice versa, meaning that the
tracking algorithm needs to be able to connect and disconnect
to relevant sensors on demand.

Filtering and selection of available sensor processes based
on the interest of the tracking process is called negotiation,
and it is designed to avoid unnecessary communication: a
data request message is sent to all sensors, but those sensors
outside the area of interest will simply ignore it and send
no response. Negotiation is an instance of the more generic
mechanism of dynamic, on-demand activation and deactivation
of connections, which allows different processes to connect
and disconnect via asynchronous message passing.

B. Distinguish information flows

As the system is designed to scale with the number of
requests, keeping track of the origins of a request and its own

Fig. 4: Overview of the framework design. Each processes (A, B
and C) is connected to a Task, that Negotiate with other processes
before establishing a connection to exchange information through the
(asynchronous) communication middleware. The Yellow Pages helps
to discover and locate the other processes and the task management
ensures separation of the information flows from and to a process.

flow of information through multiple processes (i.e. distinguish
information flows) is another very important feature that has
to be handled by the framework. In the tracking example, a
request to follow a black van is a completely different flow
than that of tracking a red car, and the estimated next position
of the red car is of no relevance to the operator interested in the
black van. Therefore, each process needs some notion of task
management: each request from a process will trigger a new
task (or replace a task) in the current process, and any result
produced in this task is therefore directly linked the request.

To summarize, our framework consists of a yellow pages
service that allows the initial resource filtering based on a
given set of features (i.e., type), a negotiation mechanism that
reduces the list of producers to only the relevant ones (given a
specific scenario), and a task manager that allows information
flows cross paths without interference (see Figure 4).

V. IMPLEMENTATION

Our proposed framework is based on the principles of
the Dynamic Process Integration Framework (DPIF) [4] –
a framework that allows modular algorithms to connect and
allow human experts to interact with one or more of the
modules – adapted to high-performance situations, that allows
us to find resources using a service oriented approach.



Fig. 5: Two target objects move over time in the area of interest (the
red and yellow dots). There are five sensors, S1− S5, and the task
management ensures a clean separation of information flows as two
different target objects cross paths and need different data from the
same sensors.

For the communication between process blocks we use
Akka2, an actor-based middleware that supports asynchronous
communication, a feature we require to make the large variety
of (types of) processes inter-operable without creating serious
performance bottlenecks. Using an actor-based middleware
allows us to represent each process block as an actor or group
of actors, where actors use asynchronous communication
among themselves. For example, a validation process gathers
movement prediction, surveillance data, and context data from
various resources and pushes its validated predictions to the
next step in the process chain. The validation process can be
represented by a group of actors, validating, in parallel, all
different predictions of the target movement.

For process blocks to discover and be discovered by re-
sources they have to be aware of their process types and
the required types of input resources [4]. The process type is
registered at the yellow pages service along with the address of
the actor performing this type of process. Other processes that
require data from this process type as input can now lookup the
entries in the yellow pages and use the addresses to establish
a communication link to these actors to create an information
flow.

The yellow pages service running in the system is globally
accessible and allows resource discovery with simple search
requests. The retrieved addresses from the yellow pages can
be used to establish a peer-to-peer communication between
processes. In the initial design of the framework, the yellow
pages is a central service, but future designs will support a
distributed and fault-tolerant service.

2Akka’s webpage: http://akka.io/.

A. Information Flows

Since process types and their required inputs are not
situation specific, and the request from within a situation
assessment is, additional filtering is required on top of the
basic search provided by the yellow pages, namely negotiation.
After a list of potential information suppliers is requested from
the yellow pages, the requester sends its criteria (e.g. location,
maximum response time) to participate in the information flow
to the suppliers. The suppliers will match the criteria against
their own settings and decide if they can participate in the
proposed information flow, by replying with a accept or reject.
The requester now has a set of relevant suppliers and can
continue with his specific task. This negotiation procedure is a
process running separately from the actual algorithm to reduce
interference.

Arrangements to work together on a specific topic for a
specific situation (contracts) established in time step t may or
may not be useful in the next time step t+1, depending on
the algorithm and the situation. As an extension to the above
described negotiation procedure, reevaluating active contracts
allows an updated set of criteria to keep the list of suppliers
up to date with respect to relevance. In other words, when
the process decides that the criteria for the input data have
changed, the negotiation procedure is repeated; existing con-
tract are reevaluated and potential new information suppliers
are considered. The negotiation allows the system to only
connect to the relevant resources, reducing the communication
links.

Filtering on the relevance of suppliers is an important step
in the creation of information flows. However, since security
domains tend to cover large areas it is unlikely for a single
information flow to be active in the entire system. With
multiple information flows, their communication paths are
expected to cross every now and then. By introducing task
management, we keep track of the active tasks of every actor,
where a task is a local instance of the process that is part
of a specific information flow. Any received data is routed
by the task management to the correct task, the task in turn
needs to transfer the data to the correct part of the process.
As illustrated in Figure 5: object one on Track 1 is covered
by sensors S1 - S5; as object 2 on Track 2 crosses the path
of object 1, they can both use the data from the same sensors
without mixing the actual information flows.

Since both the negotiation and the task management func-
tionality are agnostic to that of the processes, the framework
requires each process to use a fixed structure to communicate
with other processes: request for input data, receive input
data, and report output data. With the general component (the
orange hexagon in Figure 4) of task management, negotiation,
and the fixed set of process calls, plus the yellow pages (the
yellow hexagon) all being agnostic to the actual implemented
algorithms in the actors, a few configuration parameters allow
the framework to be adapted to any situation.



B. Scaling up

For large-scale scenarios, like decision support for security
domains usually are, the framework has to be scalable to run
hundreds or thousands of processes that are scattered across
big areas (like a country’s road network). Akka already has
support for a large distributed setup, i.e., using multiple com-
pute nodes for hosting and processing the actions of thousands
of actors, as well as efficiency asynchronous communication
between actors.

Scaling up the number of sensors, S, and the number of
objects being tracked, N , lead to a proportional increase in
the number of processes, and therefore actors. Scaling up the
number of processes is relatively easy: once the yellow pages
system contains the addresses of the actors running the desired
process type, any process can exchange data on-demand with
other processes. Although the initial implementation of the
framework uses a central yellow pages service accessible
by all running actors, this service can easily store tens of
thousands of addresses. Future implementations will have a
distributed yellow pages, an organization which will avoid
any potential bottleneck caused by quick developing scenarios,
where processes require resource localization very often.

The components of the framework have a small footprint,
and the computation per process is rather simple; however, the
interaction of all these actors can pose scalability challenges to
the system. To further reduce the interference of functionality
between processes, each actor uses concurrency to run its
different components. The implementation of the process itself
can also require a parallel solution, which can be achieved in
Akka by introducing many actors, each performing part of the
process.

The framework is set up such that processes can, with
little to no consequences, be migrated to other parts of the
system where, for example, more resources are available.
Future implementations of the framework will have this kind
of dynamic resource management aspect embedded in the
system.

In summary, our choice for Akka as a backbone of our
framework, as well as the distribution of processes over actors,
the simple, query-driven design of the yellow pages system,
and the on-demand activation and deactivation of the inter-
process links allow for smooth scaling up of the system.
The use of parallel and distributed computing, as well as the
concurrent design of processes, allows our framework to reach
high performance.

VI. FEATURES AND USABILITY

To be applicable to a variety of decision support scenarios,
our framework is designed to require little setting up effort for
different scenarios. Because each process requires the same set
of basic components – the means to find other resources and
the actual communication to these resources, these components
(described in section IV) do not have to be altered in any way.
What the components do require is a configuration of inputs

Fig. 6: The process configuration file of a Licence Plate Camera that
requires the target object’s license plate plus the area the requester is
interested in, that is used for negotiation. Its response is a location,
timestamp and value to describe the certainty of the observation.

and outputs. In other words, the inputs and outputs define a
resource type.

The system configuration is the key element that allows
the whole system to function, since it describes the type of
resources in the system, and their potential interconnections
(i.e. the output of a process is a potential input/resource for
other processes). It further describes the format in which data
is delivered by specifying the parameters of requests and
answers; these parameters form a sort of standard of com-
munication between processes, which ensures data coherent
data interpretation.

For example, at high level, a Licence Plate Camera compo-
nent types is defined by a license plate and the coordinates
of an area of interest as inputs, and the location of the
license plate as output. Figure 6 shows an example of how
the configuration file of the Licence Plate Camera surveillance
process looks like. The license plate is stored in the License-
Plate variable in the request for data, to be able to filter its
surveillance data. The camera produces the observed location
plus a value reflecting the certainty of the observations. The
second value in the request (AreaOfInterest) can be used by
the negotiation. Next to the variables, arguments can be passed
to the process, like the position and how to connect to the
physical device. Since a camera does not require any input
resources no variables of this type are shown in the example,
but the configuration of input variables use the similar syntax
as that of the output variables.

To test and evaluate the system, a simulator is used to mimic
the real world. This simulator generates objects (vehicles in
case of the tracking scenario) that randomly move through an
area, following context information in the form of a road map.

When starting the simulator, different parameters can be
set, like: the number of objects in the environment and a set
of object that are required to be present with their starting
positions. For example, vehicle with license plate XX-00-YY
should start at position A and next to this required vehicle
the simulator should fill the area with other random vehicles



Fig. 7: The simulation randomly generates M objects, except for
a few ”known” objects (top left). The objects (the blue lines) move
through the world while the sensors (the red areas) periodically check
the objects in their line of sight.

Fig. 8: Screenshot of an example operator view, showing the
predicted next position of the requested car using a heat map.

up to a total of N objects. With the use of context data (e.g.
road maps, traffic information, obstruction due to construction)
all N objects navigate through the environment using random
choices of turns.

In the context of target tracking, each sensor connects to
the simulator, requests all objects within its range, and applies
their own filter on this subset of objects to try and find the
objects it is asked to look for, similar to how it will operate
at real-life situations. Illustrated in Figure 7 is the simulated
world, using the configuration from the top left corner of the
image to generate 200 objects of which only 3 have a known
starting position, the rest receive a randomly generated starting
position and random license plate. Figure 8 shows an example
how the result of the tracking system can be used to help
the operator make a decision, by showing a heat map of the
predicted movements based on the observed surveillance data.

For the setup of the simulator multiple information and
configuration files are required: (1) files or database containing
the context data, (2) the set of structured objects, and (3) some
tuning parameters (e.g. number of noise objects, the frequency
of updating the objects, the maximum speed of an object).

VII. MEASUREMENT AND VALIDATION

For evaluation, we use the specific case-study of target
tracking in urban environments and we focus on correctness.

Fig. 9: From left to right: a synthetic scenario with one junction, a
more complex synthetic scenario, and a real life scenario of a small
city.

The idea for this validation is to change the environment (i.e.
the road map) to a case that has known results - that is, it is
either obvious or known in advance how the situation evolves
and must be resolved. If correct, the simulator will match the
ground truth in its behavior.

At the moment, no ground truth data is available (and
generating it is another research problem in itself). Therefore,
to validate the correct functionality of our simulator and
system, we use synthetic scenarions. These synthetic scenarios
are simplified environments - e.g., a main road with a single
junction, were it splits into two side roads (left most image
in Figure 9). In such cases, a full 1-to-1 comparison can be
made between the expected results and those automatically
calculated. When we observe that the tracker properly follows
the car into the right direction, the communication between
sensors, context bank and tracking algorithm is correct. As for
the decision model, it should choose to close down the one side
road and not both or the main road, to actually minimize the
impact on normal traffic . Once these synthetic microtests are
passed correctly, we further validate against realistic scenarios,
which use real road maps and data (two examples are shown
in Figure 9). In this case, validation is done by randomly
sampling intermediate results and comparing them against the
real-world and/or simulated results.

We note here that, the system we have built so far works
correctly and fully automated for the simple microtests.
Sample-based validation for larger synthetic cases is work
in progress. Furthermore, we note that empirical validation
cannot guarantee the full correctness of the system, but rather
its compliance to the expected outcome for a large number of
(simple) situations. For example, see Figure 10: the simulator
correctly reads the data from the sensors and computes the
predictions for the future position of the tracked object, but it
can only take a clear decision in the situation on the left, not
in the situation on the right.

We conclude that the simulator is accurate in following the
targets on the map, which essentially proves that it is able to
manage several processes and sensors correctly. We emphasize
that this matches its goal to support decision making by
providing the operator enough data to make an informed
decision based on high-probability predictions.

The initial validation is done on small situations, with
tens of sensors and up to ten running tracks, but for the
framework to be applicable in the targeted security domains
we have to measure the scalability of the system. To get some



Fig. 10: Left: the simulator correctly predicts the trajectory of the
object (high intensity on the heat-map); a decision can be made to
shut off the rod before the junction. Right: the simulator detects the
T-junction and predicts both rows as probable destinations. No single-
road can be selected to be closed before the a new measurement is
made.

insight in the scalability we measure the information transfer
time and the processing time. The processing time can be
expressed as the time between arrival of new information and
the time an (updated) output is ready. To express the transfer
time of information we need to realize this involves more
than a mere exchange of information from A to B. Recall
the negotiation functionality - finding and connecting two
processes. To transfer information in a situation where the
processes are already connected, the transfer time equals the
time to exchange the information (exchange cost). To transfer
information in the situation no connection exists, the transfer
time is a sum of the time to find potential receivers, the time
it takes to establish a connection (negotiation cost) and the
actual sending of the information. So the transfer time is the
sum of the negotiation cost and data exchange cost.

VIII. CONCLUSION

In the security domain, many complex situations need to
combine unstructured data and complex processes to effec-
tively support the decisions of a human operator. In this
work, we presented a generic, scalable framework for decision
support in complex situations. Our contributions are: (1)
identifying the functional and computational requirements of
such a framework, (2) proposing a first architecture for this
framework, (3) implementing a first functional prototype for
semi-automated decision support, and (4) defining and testing
validation scenarios for surveillance applications.

Our results so far are promising in terms of correctness
and simple-case performance. Our current work focuses on
complex scenario implementation and testing, thus identifying
and tackling any scalability challenges of real situations.

REFERENCES

[1] R.Sprangue, A framework for the development of decision support sys-
tems, MIS, pp 1-26, 1980

[2] D.Dörner and H.Schaub, Errors in Planning and Decision-making and
the Nature of Human Information Processing, Applied Psychology,
43(4):433453, 1994.

[3] F.Gustafsson, F.Gunnarsson, N.Bergman, U.Forssell, J.Jansson,
R.Karlsson and P.Nordlund, Particle Filters for Positioning, Navigation,
and Tracking IEEE Transactions on Signal Processing, 50(2):425437,
2002.

[4] A.Penders, G. Pavlin and M. Kamermans, A collaborative approach to
construction of complex service oriented systems, IDC, pp 55-66, 2010.

[5] H. Koen, P. de Villiers, G. Pavlin, A. de Waal, P. de Oude and F. Mignet, A
framework for inferring predictive distributions of rhino poaching events
through causal modelling, Fusion, 2014.

[6] R. Claessens, A. de Waal, P. de Villiers, A. Penders, G. Pavlin and Karl
Tuyls, Multi-Agent Target Tracking using Particle Filters enhanced with
Context Data, AAMAS, 2015


