
Sparse Analysis of Variable Path Predicates
Based Upon SSA-Form

Thomas S. Heinze and Wolfram Amme

Institute of Computer Science, Friedrich Schiller University Jena, Germany
{t.heinze,wolfram.amme}@uni-jena.de

Abstract. Static Single Assignment Form benefits data flow analysis
by its static guarantees on the definitions and uses of variables. In this
paper, we show how to exploit these guarantees to enable a sparse data
flow analysis of variable predicates, for gaining a rich predicate-based
and path-oriented characterization of a program’s variables’ values.

1 Introduction

Static Single Assignment Form (SSA-form) [6] is now widely used as an interme-
diate representation for supporting program analysis and optimization. Various
analysis and optimization techniques have been defined for SSA-form, each ex-
ploiting the properties of SSA-form to enable sparse analysis. In a sparse data
flow analysis, instead of propagating abstract information about global program
state along the program’s control flow, as done in classical data flow analysis [16],
information is propagated only from the information source to the points where
the information is needed, in case of SSA-form therefore from variable definition
to variable use. As a result, less information is stored at fewer program points.

In this paper, we enlarge the set of sparse analyses on SSA-form by a novel
technique for deriving variable predicates as a predicate-based abstraction on
a program’s variables’ values. We will in particular show, how the static single
assignment property of SSA-form naturally facilitates the analysis sparseness, in
that it allows for the characterization of variables’ values by predicates collected
along the chains of data dependences for the variables’ defining instructions, in-
stead of using global program state. Furthermore, it enables the incorporation
and derivation of path information in terms of set-based predicate encodings, in
order to distinguish variables’ values among different control flow paths. As vari-
able predicates in this way constitute a rich though finite model for a program’s
variables, beside others, methods for program verification and model checking
can benefit from incorporating the information derived by our analysis.

The rest of the paper is structured as follows: Sect. 2 introduces foundations
and main concepts, namely SSA-form, variable predicates and our sparse analysis
for deriving them. In Sect. 3, we map the analysis on to the notion of montone
dataflow frameworks for proving its correctness. Afterwards, improvements are
developed with respect to spurious data flow and unreachable code. Sect. 5
sketches the use of the analysis in a system for the generation of more precise
low-level models of WS-BPEL programs used for model checking. Eventually,
the paper summarizes and relates our work in Sect. 6 and Sect. 7, respectively.

2 Sparse Analysis of Variables Path Predicates

We are interested in deriving a predicate-based characterization of variables’
values. In other words, a predicate for each program variable, describing the
fraction of program state relevant for its value. In addition, the derived predicates
shall distinguish among a variable’s value on differing control flow paths. A
natural match for the thus defined analysis problem is Static Single Assignment
Form (SSA-form) [6], as it provides for the predicates to describe program state
due to its single assignment property, and at the same time separates the variable
definitions of different control flow paths. Beyond that, SSA-form supports a
sparse analysis, which enables a more scalable derivation of predicates. Therefore,
we will first introduce SSA-form and preliminaries in the following section. After
that, we formalize our concept of predicate-based characterization of variables’
values by so-called variable (path) predicates, which allows us then to define the
derivation of a program’s variable predicates using sparse data flow analysis.

2.1 Program Representation in SSA-Form

We represent a program in terms of a control flow graph, i.e., a directed graph
CFG = (N,E) with a set of nodes N , a set of edges E ⊆ N × N , unique
start node s ∈ N , and unique end node e ∈ N . A (control flow) path from
n0 ∈ N to nk ∈ N is a sequence (n0, n1), (n1, n2), . . . , (nk−1, nk) such that
(ni, ni+1) ∈ E for i < k. We assume that every node is on a path from the
start to the end node. Nodes are labeled by i ∈ Instr or c ∈ Cond , where
Instr is the set of the program’s instructions and Cond the set of the program’s
branching conditions, respectively. Instructions and branching conditions are
defined over the program’s variables Var . Furthermore, let Predx denote the set
of instructions and branching conditions, where x is not used nor defined.

Our analysis operates on SSA-form [6], which guarantees for each variable
a statically unique definition. This way, variables behave like values, which also
means that the relation (def-use chain) between the instruction defining variable
x, denoted def (x) ∈ Instr , and the set of instructions where x is used, denoted
uses(x) ⊆ Instr , is implicitly given. For convenience, let var(i) denote the vari-
able defined by i ∈ Instr and node denote the node n ∈ N for x ∈ Var , where
n’s label links to def (x). As usual, SSA-form is realized by introducing a new
variable for each static definition and renaming uses accordingly. At join nodes
of the control flow graph, i.e., nodes with mupltiple incoming edges, Φ-functions
x = Φ(x1, . . . , xn) are inserted to merge confluent variable definitions, such that
the value of x equals xj if the join node is reached via its j-th incoming edge.

A trick we use for incorporating the effects of a branching condition into SSA-
form and thus to support analysis is to insert assertions at the true and false
branch. Without loss of generality, we assume branching conditions x op c, where
x is a variable and c a constant. An assertion then looks like y = assert(x op c),
where x op c is the branching predicate valid at the respective branch. Uses of
x inside the branch are updated to the newly defined variable y, whose value

equals x but is guaranteed to satisfy the branching predicate. For the presen-
tation of our sparse analysis of variable predicates, we will focus – without loss
of generality, on scalar assignment expressions and neglect, e.g., memory opera-
tions or compositve data structures. However, note that these constructs can be
addressed by basic extensions [6], for example introducing a virtual variable for
heap storage, or by using tailored variants of SSA-form like HSSA-form [3].

Example 1. As an example, consider the following program snippet (left), its
SSA-form (middle), and its SSA-form with assertions added (right):

x = 1;

while (x % 2) {
x = x + 2;

}

x1 = 1;

x2 = Φ(x1,x3);
while (x2 % 2) {

x3 = x2 + 2;

}

x1 = 1;

x2 = Φ(x1,x4);
while (x2 % 2) {

x3 = assert(x2 % 2);

x4 = x3 + 2;

}

2.2 Variable Predicates

For the formal development of the analysis, we next introduce atomic predicates,
variable path predicates, and all-paths variable predicates. Apparently, we can
interpret instructions and branching conditions as first-order predicates charac-
terizing variables’ values, when substituting the assignment with the equality
operator. For instance, the value of variable x, defined through the constant as-
signment x = 10, can be described using equality predicate x = 10. A program’s
instructions and branching conditions thus constitute the set of atomic predi-
cates, augmented with additional simple equalities of form x = y, x, y ∈ Var :

Definition 1. Let Instr , Cond, and Var denote the set of instructions, branch-
ing conditions, and variables of the given program, respectively. The set of atomic
predicates is defined by Pred = Instr ∪ Cond ∪ {x = y |x, y ∈ Var}.

Characterizing a variable’s value for a single path is done by a variable path
predicate, i.e., a conjunction of instructions and branching conditions determin-
ing the variable’s value on this path. We denote such a conjunction as a set
of atomic predicates. Considering instructions x = 10; y = x * 2, we thus get
{x = 10, y = x ∗ 2}, representing the conjunction x = 10 ∧ y = x ∗ 2 for describ-
ing y’s value. Note that we, as usual, universally quantify over free variables.
In order to reflect a variable’s value for all paths, the variable path predicates
for individual paths are disjunctively combined. The resulting formulæ, called
all-paths variable predicate (or simply variable predicate), is also denoted as set:

Definition 2. A variable path predicate is a set p ∈ P(Pred) interpreted as
conjunction of atomic predicates. An (all-paths) variable predicate is then a set
f ∈ P(P(Pred)) interpreted as disjunction of conjunctions of predicates.

Assuming, e.g., if (a < 0) x = 1; else x = 3; y = x, variable y’s value
can be characterized by variable predicate {{x = 1, y = x}, {x = 3, y = x}},
where y’s path predicates for the branching’s true and false branch are disjunc-
tively combined by means of formulæ (x = 1 ∧ y = x) ∨ (x = 3 ∧ y = x).

Eventually, we define the empty set ∅ to denote the truth value true. This is
justified by variable predicates acting as premises about variables’ value, where
true is the weakest and therefore always safe premise.

2.3 Derivation of Variable Predicates

As mentioned before, a program’s SSA-form allows for a sparse derivation of
variable predicates. To this end, instead of propagating a set of predicates, de-
noting the program state for all variables, along all control flow paths, we derive
variable predicates by analyzing each variables’ definitions and uses. In princi-
ple, there are two reasons why this works: First, SSA-form guarantees that each
variable is (statically) defined once and, with the exception of Φ-functions, every
use is dominated by its definition. In consequence, a variable’s value does not
change along the paths from definition to use, such that the program state valid
directly after the definition can be used to characterize the variable’s value on
all paths. Second, only part of the overall program state is relevant for a single
variable, which can in particular be captured by following the variable’s data
dependences along the def-use chains directly encoded in SSA-form. Note that
this way, we may omit predicates affecting a variable’s value through side effects
or control dependences, which though does not invalidate the approach as it is
always safe to infer a weaker variable predicate, i.e., p instead of p ∧ q.

Thus, we assign each variable x its variable predicate pred(x) based upon
its defining instruction. For a constant assignment x = c, we can obviously set
pred(x) = {{x = c}}. In case of a simple assignment x = y, the union over
variable path predicates p ∈ pred(y), each augmented by the equality predicate
x = y, is used, in this way including derived information about y also in x’s
variable predicate. However, in order to prevent inconsistent predicates in case of
cyclic data dependences, atomic predicates other than x = y containing variable
x are removed. The same principle applies to an assertion x = assert(y op c),
though the asserted predicate x op c for variable x is added to each path predicate
besides the equality predicate x = y. The variable predicate for a variable defined
through assignment x = y op z is derived by considering all pairs (p, q) of variable
path predicates p ∈ pred(y), q ∈ pred(z) of the operand variables, flattening each
into a single set p∪q and adding the assignment as predicate. Once more, existing
atomic predicates containing variable x are removed to avoid inconsistencies.
Remember that due to SSA-form, x’s definition is dominated by the definitions
of variables y and z, which means that predicates for y and z are also reasonable
for depicting the program state at the assignment. Consider, e.g., x = y * z

with pred(y) = {{y = 10}}, pred(z) = {{z = v, v = −1}, {z = w,w = 1}}, then
pred(x) = {{z = v, v = −1, y = 10, x = y ∗z}, {z = w,w = 1, y = 10, x = y ∗z}}.
Finally, in case of a Φ-function x = Φ(x1, . . . , xn) merging confluent definitions
xj into a single value x, the variable predicate equals the union of the operands
path predicates, each augmented with an equality predicate x = xj for x and the
respective operand xj . Atomic predicates containing a variable simultaneously
defined with x, i.e., within the same control flow graph node, are again removed.
As an example, assuming x = Φ(x1,x2) with predicates pred(x1) = {{x1 = 10}}

worklist := {i ∈ Instr}
foreach i ∈ worklist do

pred(i) := ∅
end for
while worklist 6= ∅ do

select an arbitrary i ∈ worklist
worklist := worklist \ {i}
new := computePred(i)
if pred(i) 6= new then

pred(i) := new
foreach u ∈ uses(var(i)) do

worklist := worklist ∪ {u}
end for

end if
end while

function computePred(i) begin
switch (i)

case constant assignment i : x = c
return {{x = c}}

case simple assignment i : x = y
return {p ∩ Predx ∪ {x = y}

| p ∈ pred(def (y))}
case complex assignment i : x = y op z

return {(p ∪ q) ∩ Predx ∪ {x = y op z}
| p ∈ pred(def (y)),
q ∈ pred(def (z))}

case assertion i : x = assert(y op c)

return {p ∩ Predx ∪ {x op c, x = y}
| p ∈ pred(def (y))}

case Φ-function i : x = Φ(x1, . . . , xn)
let V be all variables defined in node(x)

return
⋃

1≤j≤n

{p ∩
⋂

v∈V
Predv ∪ {x = xj}

| p ∈ pred(def (xj))}
end switch

end

Fig. 1. Sparse analysis of variable predicates

and pred(x2) = {{x2 = z + 3, z = 9}}, then pred(x) = {{x1 = 10, x = x1},
{x2 = z+ 3, z = 9, x = x2}}. The following definition summarizes these rules for
the derivation of a program’s variable predicates:

Definition 3. Variable predicates are defined for a given program in SSA-form
by pred : Var → P(P(Pred)) for each variable x ∈ Var according to its defining
instruction i ∈ Instr based upon the following equations:

– constant assignment i : x = c

pred(x) = {{x = c}}
– simple assginment i : x = y

pred(x) = {p ∩ Predx ∪ {x = y} | p ∈ pred(y)}
– complex assignment i : x = y op z

pred(x) = {(p ∪ q) ∩ Predx ∪ {x = y op z} | p ∈ pred(y), q ∈ pred(z)}
– assertion i : x = assert(y op c)

pred(x) = {p ∩ Predx ∪ {x = y, x op c} | p ∈ pred(y)}
– Φ-function i : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)

pred(x) =
⋃

1≤j≤n

{p ∩
⋂
v∈V

Predv ∪ {x = xj} | p ∈ pred(xj)}

For solving the equation system defined by Definition 3, we use the worklist
algorithm in Fig. 1. The algorithm computes variable predicates by computePred
based upon the variables’ definitions as described above. Due to SSA-form’s sin-
gle assignment property, variables can be identified by their unique defining
instructions, such that variable predicates pred are assigned to instructions in-
stead of variables. Having initialized all variable predicates to the empty set and
the worklist to comprise the program’s instructions, the algorithm continuously

takes an instruction i from the worklist and recomputes its variable predicate
using computePred . Each time a change in its value is observed, pred(i) is up-
dated accordingly and all use sites of the variable defined by i are again added to
the worklist. If eventually a stable solution is reached, the algorithm terminates.

Reconsidering Example 1 and applying the algorithm, we get the solution:

pred(x1) = {{x1 = 1}}
pred(x2) = {{x1 = 1, x2 = x1}, {x1 = 1, x3 % 2, x4 = x3 + 2, x2 = x4}}
pred(x3) = {{x1 = 1, x2 = x1, x3 % 2, x3 = x2}, {x1 = 1, x2 = x4, x3 % 2, x3 = x2}}
pred(x4) = {{x1 = 1, x2 = x1, x3 % 2, x3 = x2, x4 = x3 + 2},

{x1 = 1, x3 % 2, x3 = x2, x4 = x3 + 2}}

As can be seen, the derived predicate for variable x2 consists of two path pred-
icates, characterizing x2’s value before initially entering the loop and before re-
entering the loop, respectively. Note that, assuming C semantics such that x% 2
equals x% 2 6= 0, x2’s predicate apparently determines the loop condition’s value,
i.e., (x1 = 1∧x2 = x1)∨(x1 = 1∧x3 % 2 6= 0, x4 = x3+2, x2 = x4) |= x2 % 2 6= 0,
as can be automatically inferred using a SMT solver for testing the implication.

3 Correctness of the Analysis Algorithm

In the previous section, we have developed a sparse analysis algorithm for the
derivation of variable predicates. In this section, we will prove that the algorithm
always terminates while yielding the correct set of predicates for characterizing
variables’ values. The algorithm can be seen as an optimized version of the
general iterative algorithm for data flow problems [16], which is already proven
to terminate with a safe solution for monotone problems. We will therefore first
present the concept of a monotone data flow framework and afterwards show,
how our algorithm and conceptual universe can be mapped onto a monotone data
flow framework for proving the correctness of the sparse analysis algorithm.

The principle of data flow analysis is to gather information for each instruc-
tion by iteratively propagating locally computed data flow information through
the control flow graph of a program. In general, each data flow problem can be
modeled using a data flow framework (L,∧, F), where L is the data flow in-
formation set, ∧ is the meet operator, and F is the set of semantic functions.
The data flow information set is a conceptual universe of objects upon which
the analysis is working. A semantic function corresponds to an instruction and
models the effect that an execution of the instruction has onto the incoming in-
formation. The meet operator implements the effect of joining control flow paths.
A maximum fixpoint solution for a data flow framework can be computed, if and
only if the semantic functions are monotone and (L,∧) forms a bounded semi
lattice with a one element 1 and a zero element 0 [16].1 Data flow frameworks
satisfying these requirements are called monotone data flow frameworks (MDF).

1 For the general iterative algorithm, we refer the reader to [16] or Sect. A.

3.1 Data Flow Analysis of Variable Predicates

There are multiple ways for constructing a MDF for deriving variable predicates.
An obvious approach is to derive for each node n of a control flow graph a set
of pairs (x, p), in which x stands for a variable and p for a set of predicates that
characterize the value of x at node n. While a single pair (x, p) describes a path
predicate of x, the union of all pairs represents x’s all-paths variable predicate.
The data flow framework for the calculation of variable predicates is defined by
MDFVP = (LVP,∧VP, FVP). where LVP = P(Var × P(Pred)) and ∧VP : L→ L
is the set-theoretic union operator such that l ∧VP k = l ∪ k for all l, k ∈ L.

Lemma 1. (LVP,∧VP) is a bounded semi lattice with zero element 0 ∈ LVP and
one element 1 ∈ LVP such that ∀l ∈ LVP : l ∧VP 1 = l and l ∧VP 0 = 0.

Proof. Since Var and Instr are finite sets for a given program, and thus is
P(Var × P(Pred)), the lemma follows immediately from the fact that for ev-
ery finite set M , (P(M),∪) is a bounded semi lattice with 1 = ∅ and 0 = M . ut

In the control flow graph used for the analysis, each node stands for a uniquely
labeled SSA instruction. Therefore we can unambiguously assign a semantic func-
tion to each of the nodes. This semantic function will be used to transform the
set of variable path predicates when processing the node. Each semantic function
models for a given node of the control flow graph the effect of executing the node,
i.e., the node’s attached instructions on the incoming data flow information.

Definition 4. The semantic functions FVP are defined according to i ∈ Instr :

– Φ-function i : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)

VPout = updatei(remove(VP in, V))

– any other instruction i defining value x

V Pout = updatei(remove(V Pin, {x}))

where remove : LVP × P(Var)→ LVP is defined for k ∈ LVP and V ⊆ Var by

– remove(k, V) = {(y, p ∩
⋂
v∈V

Predv | (y, p) ∈ k ∧ y /∈ V }

and updatei : LVP → LVP is defined for l ∈ LVP according to i ∈ Instr by:

– constant assignment i : x = c

updatei(l) = l ∪ {(x, {x = c})}
– simple assignment i : x = y

updatei(l) = l ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l}
– complex assignment i : x = y op z

updatei(l) = l ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l}
– assertion i : x = assert(y op c)

updatei(l) = l ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l}

– Φ-function i : x = Φ(x1, . . . , xn)

updatei(l) = l ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l}

Lemma 2. The semantic functions FVP defined in Definition 4 are monotone.

Proof. To prove that the semantic functions f ∈ FVP are monotone, we have to
show l ≤VP k ⇒ f(l) ≤VP f(k) for every l, k ∈ LVP. Since l ≤VP k iff l = l∧VP k
and ∧VP = ∪, we can alternatively show that f(l)∪ f(k) ⊆ f(l∪k) holds. First,
we prove remove(l, V) ∪ remove(k, V) = remove(l ∪ k, V) for l, k ∈ LVP:

– remove(l, V) ∪ remove(k, V)

= {(y, p∩
⋂
v∈V

Predv | (y, p) ∈ l∧y /∈ V }∪{(y, p∩
⋂
v∈V

Predv | (y, p) ∈ k∧y /∈ V }

= {(y, p ∩
⋂
v∈V

Predv | (y, p) ∈ l ∪ k ∧ y /∈ V } = remove(l ∪ k, V)

and thereafter that updatei(l) ∪ updatei(k) ⊆ updatei(l ∪ k) for every i ∈ Instr :

– constant assignment i : x = c

updatei(l) ∪ updatei(k) = l ∪ {(x, {x = c})} ∪ k ∪ {(x, {x = c})}
= l ∪ k ∪ {(x, {x = c})} = updatei(l ∪ k)

– simple assignment i : x = y

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l}
∪ k ∪ {(x, p ∪ {x = y}) | (y, p) ∈ k}

= l ∪ k ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l ∪ k} = updatei(l ∪ k)

– complex assignment i : x = y op z

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l}
∪ k ∪ {(x, p∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ k}

⊆ l ∪ k ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l ∪ k} = updatei(l ∪ k)

– assertion i : x = assert(y op c)

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l}
∪ k ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ k}

= l ∪ k ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l ∪ k} = updatei(l ∪ k)

– Φ-function i : x = Φ(x1, . . . , xn)

updatei(l) ∪ updatei(k) = l ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l}

∪ k ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ k}

= l ∪ k ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l ∪ k} = updatei(l ∪ k)

From the fact that the composition of the thus monotone functions remove (with
respect to its first argument) and updatei is monotone, follows the lemma. ut

Theorem 1. The general iterative algorithm terminates with the maximum fix-
point solution for each instance of the data flow framework MDFVP.

Proof. This is an immediate consequence of MDFVP being a monotone data flow
framework according to Lemma 1 and Lemma 2. ut

In fact, the algorithm for sparse analysis of variable predicates we have pre-
sented in Sect. 2 can be seen as an optimized variant of the general iterative
algorithm solving MDFVP. In principle, the sparse analysis differs in that path
predicates for all variables are not propagated along the control flow, as is done
by the general iterative algorithm, but rather derived and stored directly at the
control flow graphs variable-defining instructions in terms of variable predicates.
Since each variable is statically defined once in SSA-form and MDFVP’s merge
operator is the set union, the sparse approach does not invalidate the correctness
of the analysis, which allows us to state the following corollary:

Corollary 1. A safe solution to the equation system pred defined in Definition 3
can be computed using the fixpoint algorithm in Fig. 1.

4 Improvements of the Analysis

Due to the nature of sparse analysis, precision of our analysis of variable pred-
icates is impeded by the omittance of program information which is not repre-
sented by the relations of variable definition and use. However, two reasons for
imprecision, namely unreachable code and the local merging of data flow facts
at join nodes, can be addressed by the analysis extensions described next.

4.1 Spurious Data Flow

The presented sparse analysis exploits the single-assignment property of SSA-
Form and propagates data flow information, i.e., variable predicates, only along
def-use chains. While this apparently benefits analysis performance, precision
is being lost at join nodes, since the analysis does not track the correlation of
variables’ values defined conjointly along converging control flow paths.

Example 2. Consider the program snippet below and its inferred predicates:

if (...) {
a1 = 2;

b1 = 3;

} else {
a2 = 3;

b2 = 2;

}
a3 = Φ(a1,a2);
b3 = Φ(b1,b2);
c1 = a3 + b3;

pred(a1) = {{a1 = 2}} pred(b1) = {{b1 = 3}}
pred(a2) = {{a2 = 3}} pred(b2) = {{b2 = 2}}
pred(a3) = {{a1 = 2, a3 = a1}, {a2 = 3, a3 = a2}}
pred(b3) = {{b1 = 3, b3 = b1}, {b2 = 2, b3 = b2}}
pred(c1) = {{a1 = 2, a3 = a1, b1 = 3, b3 = b1, c1 = a3 + b3},

{a1 = 2, a3 = a1, b2 = 2, b3 = b2, c1 = a3 + b3},
{a2 = 3, a3 = a2, b1 = 3, b3 = b1, c1 = a3 + b3},
{a2 = 3, a3 = a2, b2 = 2, b3 = b2, c1 = a3 + b3}}

Therein, the values of a3 and b3 are characterized with different path predicates,
so that the values on the true and false branch are distinguished. Though after
the join, when considering c1 = a3 + b3, spurious combinations of path pred-
icates arise, e.g., {a1 = 2, a3 = a1, b2 = 2, b3 = b2, c1 = a3 + b3}, coming from
mutually exclusive control flow paths. Therefore, c1’s inferred variable predicate
is imprecise in that it allows for values 4, 5, 6, while only 5 can occur at runtime.

In order to remove this imprecision but still support a sparse analysis, vari-
able path predicate are attached information about the represented control flow
paths. To this end, we introduce path designators for denoting a path based on
the edges entering a control flow graph’s join nodes throughout the path:

Definition 5. A path designator δ ∈ P(N ×N) is a definite relation, such that
∀n ∈ N : (n, i) ∈ δ ∧ (n, j) ∈ δ → i = j, which determines for each node n
of a subset of a control flow graph’s join nodes a predecessor node using the
predecessor’s index. Overriding of a path designator δ by a path designator γ is
defined as δ ⊕ γ = {(x, i) | (x, i) ∈ δ ∧ @(x, j) ∈ γ} ∪ {(y, i) | (y, i) ∈ γ}.

Apparently, two path designators δ and γ defining different predecessors
δ(n) 6= γ(n) for the same node n characterize mutually exclusive control flow
paths. Augmenting variable path predicates with path designators, we are able
to rule out the spurious combinations of path predicates:

Definition 6. Variable predicates with path designators are defined for a given
control flow graph by pred∗ : Instr → P(P(N ×N)×P(Pred)) for each variable
x ∈ Var according to its defining instruction i ∈ Instr based upon equations:

– constant assignment i : x = c

pred∗(x) = {(∅, {x = c})}
– simple assginment i : x = y

pred∗(x) = {(δ, p ∩ Predx ∪ {x = y}) | (δ, p) ∈ pred∗(y)}
– assertion i : x = assert(y op c)

pred∗(x) = {(δ, p ∩ Predx ∪ {x = y, x op c}) | (δ, p) ∈ pred∗(y)}
– Φ-function x : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)

pred∗(x) =
⋃

1≤j≤n

{(δ ⊕ {(node(x), j)},

p ∩
⋂
v∈V

Predv ∪ {x = xj}) | (δ, p) ∈ pred∗(xj)}

– complex assignment i : x = y op z

pred∗(x) = {(δ ∪ γ, (p ∪ q) ∩ Predx ∪ {x = y op z})
| (δ, p) ∈ pred∗(y), (γ, q) ∈ pred∗(z) ∧ (δ ∪ γ) is definite}

For constant assignments, we thus attach the empty set as path designator
to derived path predicates. In case of simple assignments and assertions, path
designators are merely propagated as there is just a single variable operand and
line of control. For a Φ-function, path designators attached to the operands’

path predicates are updated according to the operands’ indices, determining
the respective predecessors of the Φ-function’s join node. In case of a complex
assignment, the union of path designators is created for each combination of
the operands’ path predicates. If the union is not a definite relation, the path
predicates come from mutually exclusive paths and their combination is skipped.

In order to solve the equation system of Definition 6, we can again use a
variant of the algorithm in Fig. 1. Reconsidering Example 2 and assuming a
node join for the two Φ-functions a3 = Φ(a1,a2) and b3 = Φ(b1,b2), we get:

pred∗(a1) = {(∅, {a1 = 2})} pred∗(a2) = {(∅, {a2 = 3})}
pred∗(b1) = {(∅, {b1 = 3})} pred∗(b2) = {(∅, {b2 = 2})}
pred∗(a3) = {({(join, 1)}, {a1 = 2, a3 = a1}), ({(join, 2)}, {a2 = 3, a3 = a2})}
pred∗(b3) = {({(join, 1)}, {b1 = 3, b3 = b1}), ({(join, 2)}, {b2 = 2, b3 = b2})}
pred∗(c1) = {({(join, 1)}, {a1 = 2, a3 = a1, b1 = 3, b3 = b1, c1 = a3 + b3}),

({(join, 2)}, {a2 = 3, a3 = a2, b2 = 2, b3 = b2, c1 = a3 + b3})}

Therein, each path predicate has a conjoined path designator, determining the
represented control flow path in terms of join’s predecessors. For instance, a3’s
path predicates {a1 = 2, a3 = a1}, {a2 = 3, a3 = a2} are assigned designators
{(join, 1)}, {(join, 2)}, denoting the if and else branch, respectively. Spurious
combinations of path predicates are thus ruled out for variable c1 = a3 + b3

such that c1’s all-paths predicate allows for deriving its precise value 5.
Eventually, we can state a correctness argument similar to the one in Sect. 3

for the thus defined improved analysis with path designators:

Corollary 2. A safe solution to the equation system pred∗ defined in Defini-
tion 6 can be computed using the fixpoint algorithm in Fig. 1. 2

4.2 Unreachable Code

Another source of imprecision is reasoned by unreachable code, i.e., program
statements that can never be executed due to unsatisfiable branching conditions.
The analysis considers data dependences for propagating data flow information,
but ignores control dependences, assuming that each branching condition is sat-
isfiable and therefore every branch of the control flow can be executed.

Example 3. Consider the program snippet below and its inferred predicates:

if (a1 > 10) {
a2 = assert(a1 > 10);

if (a2 > 5) {
a3 = assert(a2 > 5);

b1 = 1;

} else {
a4 = assert(a2 ≤ 5);

b2 = -1;

}
b3 = Φ(b1,b2);

pred(a2) = {{. . . , a2 > 10, a2 = a1}}
pred(a3) = {{. . . , a2 > 10, a2 = a1, a3 > 5, a3 = a2}}
pred(b1) = {{b1 = 1}}
pred(a4) = {{. . . , a2 > 10, a2 = a1, a4 ≤ 5, a4 = a2}}
pred(b2) = {{b2 = −1}}
pred(b3) = {{b1 = 1, b3 = b1}, {b2 = −1, b3 = b2}}

2 For the proof, see Sect. B

As can be seen, in spite of the fact that the condition of the inner branching
is always satisfied and its false branch can therefore never be executed, the
analysis considers variable b2’s value −1, defined inside the false branch, to flow
into variable b3. Thus, b3’s variable predicate is imprecise in that it contains the
path predicate {b2 = −1, b3 = b2} and consequently allows for values 1 and −1.

Fortunately, we can resort to the approach of combining analyses to include a
kind of unreachable code elimination [5, 19]. Principle of the combined analysis is
to defer the propagation of data flow information through a node until the node
is determined to be executable. Therefore, instructions’ variable predicates are
not computed in an arbitrary order but rather in conformance with the control
flow relation. In addition, a branching instruction’s condition is evaluated based
upon inferred variable predicates. If evaluation results in a definite value, the
executed branch is statically known such that all other, unreachable branches
can be ignored by the analysis. Otherwise, if inferred variable predicates do not
allow for determining the branching result, all branches are considered instead.

The worklist algorithm in Fig. 2 implements the combined analysis, keeping
track of executable nodes using bit map executable. As before (refer to Fig. 1),
instructions’ variable predicates pred are continuously computed by computePred
until a fixpoint has been found, though this time, only for instructions whose
nodes are marked executable. The function evaluateCond , used in the algorithm
for evaluating a branching condition, is generic in the applied solver, in that
it allows for a SMT solver as well as for, e.g., a simpler constant evaluation.
The solver is used to test whether the inferred variable predicate for x implies
the value of a condition expression x op c. Though, in order to provide for an
overapproximation, evaluateCond does not test for condition d itself, but rather
for its negation. Thus, if ¬d is shown for pred(x), the condition is determined
unsatisfiable. We naturally assume for the solver to guarantee that if {p, q} |= d
(i.e., p∨q |= d) is shown, p |= d and q |= d can be shown as well for p, q ∈ P(Pred).

Reconsidering Example 3 and applying the algorithm, we get the solution:

pred(a2) = {{. . . , a2 > 10, a2 = a1}} pred(a4) = ∅
pred(a3) = {{. . . , a2 > 10, a2 = a1, a3 > 5, a3 = a2}} pred(b2) = ∅
pred(b1) = {{b1 = 1}} pred(b3) = {{b1 = 1, b3 = b1}}

As can be seen, the inner branching’s false branch has been identified unreach-
able, assuming the used solver able to show {{. . . , a2 > 10, a2 = a1}} |= a2 > 5.
As a result, the empty set is inferred for variables defined in the false branch, so
that b3’s variable predicate only comprises one path predicate for the reachable
true branch and consequently only allows for deriving b3’s precise value 1.

For proving monotonicity of the thus defined combined analysis with unreach-
able code elimination, the presumption for the used solver, that if {p, q} |= d is
shown, also p |= d and q |= d can be shown for p, q ∈ P(Pred), is essential. Based
upon this presumption, we can again state the following correctness argument:

let s ∈ Instr be the start instruction
executable(node(s)) := true
worklist := {s}
pred(s) := ∅
foreach i ∈ Instr \ {s} do
executable(node(i)) := false
pred(i) := ∅

end for
while worklist 6= ∅ do

select an arbitrary i ∈ worklist
worklist := worklist \ {i}
if executable(node(i)) then
new := computePred(i)
if pred(i) 6= new then
pred(i) := new
foreach u ∈ uses(var(i)) do
worklist := worklist ∪ {u}

end for
end if
if i is a branch instruction then

let t be i′s successor in true branch
let f be i′s successor in false branch
let d be i′s branching condition
if evaluateCond(d) = true then
executable(node(t)) := true
worklist := worklist ∪ {t}

end if
if evaluateCond(¬d) = true then
executable(node(f)) := true
worklist := worklist ∪ {f}

end if
else if i has successor s then
executable(node(s)) := true
worklist := worklist ∪ {s}

end if
end if

end while

function computePred(i) begin
switch (i)
case constant assignment i : x = c
return {{x = c}}

case simple assignment i : x = y
return {p ∩ Predx ∪ {x = y}

| p ∈ pred(def (y))}
case complex assignment i : x = y op z
return {(p ∪ q) ∩ Predx ∪ {x = y op z}

| p ∈ pred(def (y)),
q ∈ pred(def (z))}

case assertion i : x = assert(y op c)

return {p ∩ Predx ∪ {x op c, x = y}
| p ∈ pred(def (y))}

case Φ-function i : x = Φ(x1, . . . , xn)
let V be all variables defined in node(x)

return
⋃

1≤j≤n

{p ∩
⋂

v∈V
Predv ∪ {x = xj}

| p ∈ pred(def (xj))}
∧node(x)′s jth predecessor

is marked as executable}
end switch

end

function evaluateCond(d) begin
let d = x op c
if pred(x) |= ¬d then
return false

else
return true

end if
end

Fig. 2. Sparse analysis of variable predicates with unreachable code elimination

Corollary 3. The algorithm in Fig. 2 computes a safe solution to the equation
system pred defined in Definition 3 (or to pred∗ defined in Definition 6), while
omitting unreachable code. 3

5 Application to Model Checking

We have implemented the presented analysis in a system for the generation of
more precise low-level models used for model checking distributed business pro-
cesses [14]. Fig. 3 contains a sketch of the system. The system expects a program
of the Web Services Business Process Execution Language (WS-BPEL) [21], i.e.,
an XML-based industry standard for implementing distributed business pro-
cesses. A WS-BPEL program is then translated into our SSA-form intermediate
format, serving as basis for static analyses and optimizations. Eventually, the
intermediate format is transformed into low-level Petri nets, the ordinary for-

3 For the proof, see Sect. C.

Analysis Optimization

Variable Predicates

Conditional ControlStatic Analysis of

Flow Unfolding

YICES

SMT Solver

Transformation

into Petri nets

Transformation

into SSA−Form

WS−BPEL

program

sound/unsound

Model Checker

FIONA/LOLA

Fig. 3. System for the improved Petri-net-based verification of WS-BPEL programs

malism in the area of business process verification, which are afterwards passed
into the model checker Fiona/LoLA4 for verifiying critical soundness properties.

Program data is usually omitted when compiling Petri net models, which
however impairs precision when using the models for verification. Integrating
program data to regain precision though requires some kind of data abstraction,
i.e., a finite model for program data. We have thus used variable path predicates,
as derived for a WS-BPEL program by our analysis, to encode program data into
the low-level models by means of a technique called control flow unfolding [13].
This technique in principle splits and duplicates control flow for paths revealing
distinct variable path predicates. As a side effect, a program’s branching condi-
tions can be evaluated and resolved along unfolded control flow paths using a
SMT solver (YICES5) on the derived variable path predicates. We were able to
demonstrate the potential of this approach in a case study of WS-BPEL pro-
grams supplied by an industrial partner [14]. Has there been no safe verification
for these programs possible beforehand, based upon conventional program-to-
Petri-net mappings, were we able to provide for precise low-level models and
thus verification for half of the case study’s programs using our system.

6 Related Work

In model checking, predicate abstraction [10] is used to exhaustively reason about
infinitely many concrete program states in terms of finite number of abstract
states as determined by a pre-defined set of predicates. Counterexample-guided
abstraction refinement [4] in addition allows for iteratively refining predicates,
such that a rather coarse abstraction is made more precise, based upon validat-
ing the abstract states, which have been identified as counterexamples by the
model checking process, with respect to feasibility of their corresponding con-
crete states. Abstract states denoting false positives are thus identified and ruled
out until an ideal abstraction is found. While generating predicates for describing
program state in this way is accurate and precise, it is at the same time complex
and expensive as it requires multiple iterations and powerful decision proce-
dures. Furthermore, model checking in general is focussed on a specific program
property, which determines the resulting abstraction and thus predicates.

4 http://service-technology.org/fiona/
5 http://yices.csl.sri.com/

A particular fraction of work considers the problem of infeasible paths as a
cause of imprecision in data flow analysis. A common approach is to augment
the analysis lattice with a set of fixed predicates or assertions on variable values,
resulting in a so-called qualified data flow problem [15], which helps to avoid
merging data flow values with contradicting assertions, e.g., infeasible paths.
However, compared to the analysis described in this paper, the set of considered
predicates is either limited to predicates appearing in branching conditions and
which are only propagated as long as their value does not not change [2, 17] or
pre-defined by a given set of predicates by means of a specification [7, 12]. The
more advanced techniques in [8, 9] instead iteratively refine the set of considered
predicates, for ruling out both, infeasible paths and imprecise merging of data
flow facts, until a precise enough solution to the data flow problem is found.

Bod́ık et al. [2] apply demand-driven analysis for identifying infeasible paths
by propagating branching predicates backwards until their value is determined.
The used symbolic resolution mechanism is limited to constant assignments and
condition predicates. In the same line of work falls [20], where predicates de-
scribing program state are derived in a backwards fashion based on the weakest
precondition calculus. While the formal framework allows for arbitrary predi-
cates, its implementation again confines considered predicates to simple variants
x op c, where x is a variable and c a constant, to regain analysis effectiveness.

Similar methods have been used to identify false positives for static analysis
using backwards symbolic execution [1, 11, 18]. These methods infer path con-
ditions, i.e., predicates describing necessary requirements of program state for
paths, which can be feed into constraint solvers. If insatisfiability is then shown,
the paths and thus any associated program information are false positives.

To the knowledge of the authors, the presented analysis is the first data flow
analysis for deriving predicates describing program state on a per variable basis.
Furthermore, the authors are not aware of an analysis using the sparse analysis
approach based upon SSA-form for deriving predicates describing program state.

7 Conclusion

In this paper, we have presented a novel data flow analysis based upon SSA-
form for deriving variable predicates as predicate-based characterization of a
program’s variables’ values. We have motivated how SSA-form benefits such an
analysis by multiple means: First, exploiting the single assignment property al-
lows us to use instruction and branching conditions as predicates for describing
program state. Additionally, relevant parts of the program state can be easily
identified for each variable following the def-use-chains implicitly given in SSA-
form, which facilitates a sparse analysis. Eventually, Φ-functions depict variable
definitions on confluent control flow paths and thus enable for the natural deriva-
tion of path information. While the variable predicates derived by our analysis
have currently only been used for generating low-level models to more precisely
model check WS-BPEL programs, we are confident on applying our analysis also
to other programming languages and application domains in future work.

References

1. Arzt, S., Rasthofer, S., Hahn, R., Bodden, E.: Using Targeted Symbolic Execution
for Reducing False-Positives in Dataflow Analysis. In: SOAP’15, Proc. pp. 1–6.
ACM (2015)

2. Bod́ık, R., Gupta, R., Soffa, M.L.: Refining Data Flow Information Using Infeasible
Paths. In: ESEC-FSE’97, Proc. pp. 361–377. ACM (1997)

3. Chow, F., Chan, S., Liu, S.M., Lo, R., Streich, M.: Effective Representation of
Aliases and Indirect Memory Operations in SSA-Form. In: CC’05, Proc. pp. 253–
267. Springer (2005)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, M.: Counterexample-Guided
Abstraction Refinement. In: CAV’00, Proc. pp. 154–169. Springer (2000)

5. Click, C., Cooper, K.D.: Combining Analyses, Combining Optimizations. ACM
TOPLAS 17(2), 181–196 (1995)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N.: Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. ACM TOPLAS
13(4), 451–490 (1991)

7. Das, M., Lerner, S., Seigle, M.: ESP: Path-Sensitive Program Verification in Poly-
nomial Time. In: PLDI’02, Proc. pp. 57–68. ACM (2002)

8. Dhurjati, D., Das, M., Yang, Y.: Path-Sensitive Dataflow Analysis with Iterative
Refinement. In: SAS’06, Proc. pp. 425–442. Springer (2006)

9. Fischer, J., Jhala, R., Majumdar, R.: Joining Dataflow with Predicates. In: ESEC-
FSE’05, Proc. pp. 227–236. ACM (2005)

10. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: CAV’97,
Proc. pp. 72–83. Springer (1997)

11. Hammer, C., Schaade, R., Snelting, G.: Static Path Conditions for Java. In:
PLAS’08, Proc. pp. 57–66. ACM (2008)

12. Hampapuram, H., Yang, Y., Das, M.: Symbolic Path Simulation in Path-Sensitive
Dataflow Analysis. In: PASTE’05, Proc. pp. 52–58. ACM (2005)

13. Heinze, T.S., Amme, W., Moser, S.: A Restructuring Method for WS-BPEL Busi-
ness Processes Based on Extended Workflow Graphs. In: BPM 2009, Proc. pp.
211–228. Springer (2009)

14. Heinze, T.S., Amme, W., Moser, S.: Compiling More Precise Petri Net Models for
an Improved Verification of Service Implementations. In: SOCA 2014, Proc. pp.
25–32. IEEE (2014)

15. Holley, L.H., Rosen, B.K.: Qualified Data Flow Problems. In: POPL’80, Proc. pp.
68–82. ACM (1980)

16. Kam, J.B., Ullman, J.D.: Monotone Data Flow Analysis Frameworks. Acta Inf.
7(3), 305–317 (1977)

17. Murphy, B.R.: Frameworks for Precise Program Analysis. Ph.D. thesis, Stanford
University (2001)

18. Snelting, G.: Combining Slicing and Constraint Solving for Validation of Measure-
ment Software. In: SAS’96, Proc. pp. 332–348. Springer (1996)

19. Wegman, M.N., Zadeck, F.K.: Constant Propagation with Conditional Branches.
ACM TOPLAS 13(2), 181–210 (1991)

20. Winter, K., Zhang, C., Hayes, I.J., Keynes, N., Cifuentes, C., Li, L.: Path-Sensitive
Data Flow Analysis Simplified. In: ICFEM 2013, Proc. pp. 415–430. Springer
(2013)

21. Web Services Business Process Execution Language Version 2.0. OASIS Standard
(2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

A General Iterative Algorithm for Data Flow Analysis

A data flow framework is defined as tuple (L,∧, F), which consists of the data
flow information set L, the meet operator ∧ on L, and the set F of semantic
functions f ∈ F with f : L→ L. Figure 4 shows the general iterative algorithm
for data flow analysis, that terminates and yields the maximum fixpoint solution
for a data flow framework iff the semantic functions are monotone and (L,∧)
forms a bounded semi lattice with a one element 1 and a zero element 0 [16].

Thereby, a semi lattice (L,∧) is a set L with a binary operation ∧ such that
for all a, b, c ∈ L holds a ∧ a = a (idempotence), a ∧ b = b ∧ a (commutativity),
and a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity). A semi lattice (L,∧) has a zero
element 0 ∈ L iff a∧ 0 = 0 for every a ∈ L and a one element 1 ∈ L iff a∧ 1 = a
for every a ∈ L. A function f : L → L is called monotone iff for each a, b ∈ L
holds a ≤ b→ f(a) ≤ f(b), whereby ≤ is the ordinary partial order induced by
the semi lattice (L,∧), i.e., a ≤ b↔ a ∧ b = a for each a, b ∈ L.

In the initial phase of the algorithm, the data flow information that corre-
sponds to the one element is assigned to each node other than the start node.
The start node (s) gets a special element NULL assigned, depending on the con-
sidered data flow problem. In the iteration phase, the algorithm derives for each
node successively the outgoing data flow information from its direct predeces-
sor nodes. The algorithm terminates and yields a safe solution of the data flow
framework, if for each node no further data flow information can be derived.

In general, the efficiency of the general iterative algorithm is influenced by
the order in which nodes are visited. Reverse postorder is a typical iteration
order for forward data flow problems. In contrast, postorder is often used for
backward data flow problems. In addition, the general algorithm can be improved
by noticing that the incoming data flow information will not change the outgoing
information of a node. Therefore, data flow algorithms that are used in practice
are often based on worklist approaches, in which nodes are kept that still need to
be processed. In each iteration of such an algorithm, an arbitrary node is taken
from the worklist, its outgoing information is computed, and if the outgoing
information has been changed, the node’s successors are added to the worklist.

B Analysis with Path Designators

The proof of correctness for the analysis with path designators resembles the
correctness proof for the original analysis in Sect. 3. To this end, we first redefine
the analysis in terms of a data flow framework MDF VP∗ :

Definition 7. The data flow framework for the improved analysis with path
designators is defined by the tuple MDF VP∗ = (LVP∗ ,∧VP∗ , FVP∗) such that
LVP∗ = P(Var × P(N × N) × P(Pred)) and ∧VP∗ = ∪. Further, the semantic
functions FVP∗ are defined according to instructions i ∈ Instr as follows:

– Φ-function i : x = Φ(x1, . . . , xn)

VP∗out = update∗i (remove∗(VP∗in, V)), where

INFout(s) := NULL
foreach n ∈ N \ {s} do

INFout(n) := 1
end for
repeat

stable := true
foreach n ∈ N do

INF in(n):=
∧

n′∈predecessors(n)

INFout(n’)

new := fn(INF in(n));
if new 6= INFout(n) then

INFout(n) := new
stable := false

end if
end for

until stable

Fig. 4. The general iterative algorithm for data flow analysis

V ⊆ Var is the set of all variables defined in node(x)

– any other instruction i defining value x

VP∗out = update∗i (remove∗(VP∗in, {x}))

where remove∗ : LVP∗ × P(Var)→ LVP∗ is defined for k ∈ LVP∗ , V ⊆ Var by:

– remove∗(k, V) = {(y, δ, p ∩
⋂
v∈V

Predv | (y, δ, p) ∈ k ∧ y /∈ V }

and update∗i : LVP∗ → LVP∗ is defined for l ∈ LVP∗ according to i ∈ Instr by:

– constant assignment i : x = c

update∗i (l) = l ∪ {(x, ∅, {x = c})}
– simple assignment i : x = y

update∗i (l) = l ∪ {(x, δ, p ∪ {x = y}) | (y, δ, p) ∈ l}
– complex assignment i : x = y op z

update∗i (l) = l ∪ {(x, δ ∪ γ, p ∪ q ∪ {x = y op z})
| (y, δ, p), (z, δ, q) ∈ l ∧ (δ ∪ γ) is definite}

– assertion i : x = assert(y op c)

update∗i (l) = l ∪ {(x, δ, p ∪ {x = y, x op c}) | (y, δ, p) ∈ l}
– Φ-function i : x = Φ(x1, . . . , xn)

update∗i (l) = l ∪
⋃

1≤j≤n

{(x, δ ⊕ {(node(x), j)}, p ∪ {x = xj}) | (xj , δ, p) ∈ l}

With Definition 7 in place, we then show in the following two lemmata that
MDF VP∗ is a monotone data flow framework:

Lemma 3. (LVP∗ ,∧VP∗) is a bounded semi lattice with zero element 0 ∈ LVP∗

and one element 1 ∈ LVP∗ such that ∀l ∈ LVP∗ : l ∧VP∗ 1 = l and l ∧VP∗ 0 = 0.

Proof. For a given program, sets Var , N , and Instr are finite. Furthermore, the
number of a join node’s predecessors is limited by a number n ≥ 0, so that, by
construction of the semantic functions, the analysis lattice effectively becomes
LVP∗ = P(Var ×P(N ×{0, 1, . . . , n})×P(Pred)), and is also finite. The lemma
follows from the fact that for a finite set M , (P(M),∪) is a bounded semi lattice
with zero element M and one element ∅. ut

Lemma 4. The semantic functions FVP∗ are monotone.

Proof. Similar to Lemma 2, we prove for each semantic function f ∈ FVP∗ that
f(l) ∪ f(k) ⊆ f(l ∪ k) holds. Therefore, we show for l, k ∈ LVP∗ and V ⊆ Var
that remove∗(l, V) ∪ remove∗(k, V) = remove∗(l ∪ k, V):

– remove∗(l, V) ∪ remove∗(k, V)

= {(y, δ, p ∩
⋂
v∈V

Predv | (y, δ, p) ∈ l ∧ y /∈ V }

∪ {(y, δ, p ∩
⋂
v∈V

Predv | (y, δ, p) ∈ k ∧ y /∈ V }

= {(y, δ, p ∩
⋂
v∈V

Predv | (y, δ, p) ∈ l ∪ k ∧ y /∈ V }

= remove∗(l ∪ k, V)

and that update∗i (l) ∪ update∗i (k) ⊆ update∗i (l ∪ k) for every i ∈ Instr :

– constant assignment i : x = c

update∗i (l) ∪ update∗i (k)
= l ∪ {(x, ∅, {x = c})} ∪ k ∪ {(x, ∅, {x = c})}
= l ∪ k ∪ {(x, ∅, {x = c})}
= update∗i (l ∪ k)

– simple assignment i : x = y

update∗i (l) ∪ update∗i (k)
= l∪ {(x, δ, p∪ {x = y}) | (y, δ, p) ∈ l} ∪ k ∪ {(x, δ, p∪ {x = y}) | (y, δ, p) ∈ k}
= l ∪ k ∪ {(x, δ, p ∪ {x = y}) | (y, δ, p) ∈ l ∪ k}
= update∗i (l ∪ k)

– Φ-function i : x = Φ(x1, . . . , xn)

update∗i (l) ∪ update∗i (k)

= l ∪
⋃

1≤j≤n

{(x, δ ⊕ {(node(x), j)}, p ∪ {x = xj}) | (xj , δ, p) ∈ l}

∪ k ∪
⋃

1≤j≤n

{(x, δ ⊕ {(node(x), j)}, p ∪ {x = xj}) | (xj , δ, p) ∈ k}

= l ∪ k ∪
⋃

1≤j≤n

{(x, δ ⊕ {(node(x), j)}, p ∪ {x = xj}) | (xj , δ, p) ∈ l ∪ k}

= update∗i (l ∪ k)

– complex assignment i : x = y op z

update∗i (l) ∪ update∗i (k)
= l∪{(x, δ∪γ, p∪q∪{x = y op z}) | (y, δ, p), (z, γ, q) ∈ l∧ (δ∪γ) is definite}
∪ k∪{(x, δ∪γ, p∪q∪{x = y op z}) | (y, δ, p), (z, γ, q) ∈ k∧(δ∪γ) is definite}
⊆ l ∪ k
∪{(x, δ∪γ, p∪q∪{x = y op z}) | (y, δ, p), (z, γ, q) ∈ l∪k∧(δ∪γ) is definite}

= update∗i (l ∪ k)

– assertion i : x = assert(y op c)

update∗i (l) ∪ update∗i (k)
= l ∪ {(x, δ, p ∪ {x = y, x op c}) | (y, δ, p) ∈ l}
∪ k ∪ {(x, δ, p ∪ {x = y, x op c}) | (y, δ, p) ∈ k}

= l ∪ k ∪ {(x, δ, p ∪ {x = y, x op c}) | (y, δ, p) ∈ l ∪ k}
= update∗i (l ∪ k)

From the fact that the composition of monotone functions remove∗ and update∗i
is also a monotone function, then again follows the lemma. ut

Theorem 2. The general iterative algorithm terminates with the maximum fix-
point solution for each instance of the data flow framework MDF VP∗ .

Proof. This immediately follows from MDF VP∗ being a monotone data flow
framework according to Lemma 3 and Lemma 4. ut

C Analysis with Unreachable Code Elimination

The proof of correctness for the analysis with unreachable code elimination again
resembles the correctness proof in Sect. 3. To this end, we redefine the combined
analysis in terms of a data flow framework MDF VP† . Following [5], the data
flow framework is based on the product of the original lattice (LVP,∧VP) and a
boolean lattice with elements U and R modelling reachability information:

Definition 8. The data flow framework for the combined analysis with unreach-
able code elimination is defined by the tuple MDF VP† = (LVP† ,∧VP† , FVP†) such
that LVP† = {(U , ∅)} ∪ {(R, r) | r ∈ LVP} ⊆ {U ,R} × LVP and

k ∧VP† l =


(U , ∅) if l = (U , ∅) and k = (U , ∅)
(R, s) if l = (R, s) and k = (U , ∅)
(R, t) if l = (U , ∅) and k = (R, t)
(R, s ∪ t) if l = (R, s) and k = (R, t)

for every k, l ∈VP† and s, t ∈ LVP. Furthermore, the semantic functions FVP†

are defined according to instructions i ∈ Instr as follows:

– branch guard instruction i : guard(x op c)

VP†out =


(R, s) if V P †in = (R, s) and h |= ¬(x op c) can

not be shown for h = {p | (x, p) ∈ s}
(U , ∅) otherwise

– Φ-function i : x = Φ(x1, . . . , xn)

VP†out =

{
(R, updatei(remove(s, V))) if V P †in = (R, s)
(U , ∅) otherwise

,

where V ⊆ Var is the set of all variables defined in node(x)

– any other instruction i defining value x

VP†out =

{
(R, updatei(remove(s, {x}))) if V P †in = (R, s)
(U , ∅) otherwise

where LVP, remove, and updatei are defined as in Sect. 3.

With Definition 8 in place, we then show in the following two lemmata that
MDF VP† is a monotone data flow framework:

Lemma 5. (LVP† ,∧VP†) is a bounded semi lattice with zero element 0 ∈ LVP†

and one element 1 ∈ LVP† such that ∀l ∈ LVP† : l ∧VP† 1 = l and l ∧VP† 0 = 0.

Proof. Tuple (B,∨) is obviously a bounded semi lattice with zero element true
and one element false. Lemma 1 also shows that (LVP,∧VP) is a bounded semi
lattice with zero element Var×P(Pred) and one element ∅. ConsideringR = true
and U = false, (LVP† ,∧VP†) can be seen as cartesian product of bounded semi
lattices, which forms again a bounded semi lattice. Further, for all l ∈ LVP† , we

have l∧†VP 0 = 0 and l∧VP† 1 = l for 0 = (R,Var ×P(Pred)) and 1 = (U , ∅) ut

Lemma 6. The semantic functions FVP† are monotone.

Proof. We first consider semantic functions f ∈ FVP† for branch guard instruc-
tions. Using l ≤VP† k ↔ l ∧VP† k = l, we will show that l ≤VP† k implies
f(l) ≤VP† f(k) for each l, k ∈ LVP† :

– branch guard instruction i : guard(x op c)

We consider cases for l, k

• l = (U , ∅), k = (U , ∅): f(l) = (U , ∅) = f(k)

• l = (U , ∅), k = (R, s) with s ∈ LVP: contradicts premise l ≤VP† k

• l = (R, s), k = (U , ∅) with s ∈ LVP:

f(l) ≤VP† (U , ∅) = f(k) since (U , ∅) is one element of (LVP† ,∧VP†)

• l = (R, s), k = (R, t) with s, t ∈ LVP:

We consider cases for g = {p | (x, p) ∈ s}, h = {p | (x, p) ∈ t}:
∗ g |= ¬(x op c) can not be shown, h |= ¬(x op c) can not be shown:

f(l) = (R, s) ≤VP† (R, t) = f(k) due to premise l ≤VP† k

∗ g |= ¬(x op c), h |= ¬(x op c) can not be shown:

contradicts premise l ≤VP† k, i.e., from l = (R, s) ≤VP† (R, t) = k
we have t ⊆ s and h = {p | (x, p) ∈ t} ⊆ {p | (x, p) ∈ s} = g, assuming
g |= ¬(x op c) we get h |= ¬(x op c) violating the case condition

∗ g |= ¬(x op c) can not be shown, h |= ¬(x op c):

f(l) = (R, s) ≤VP† (U , ∅) = f(k)

∗ g |= ¬(x op c), h |= ¬(x op c):

f(l) = (U , ∅) = f(k)

Similar to Lemma 2, we show f(l∧VP† k) ≤VP† f(l)∧VP† f(k) for the remaining
semantic functions f ∈ FVP† , with V ⊆ Var and l, k ∈ LVP† :

– Φ-function i : x = Φ(x1, . . . , xn)

We consider cases for l, k

• l = (U , ∅), k = (U , ∅):
f(l) ∧VP† f(k) = (U , ∅) ∧VP† (U , ∅) = (U , ∅) = f((U , ∅)) = f(l ∧VP† k)

• l = (R, s), k = (U , ∅) with s ∈ LVP:

f(l) ∧VP† f(k) = (R, updatei(remove(s, V)) ∧VP† (U , ∅)
= (R, updatei(remove(s, V)) = f((R, s)) = f(l ∧VP† k)

• l = (U , ∅), k = (R, s) with s ∈ LVP:

f(l) ∧VP† f(k) = (U , ∅) ∧VP† (R, updatei(remove(s, V))
= (R, updatei(remove(s, V)) = f((R, s)) = f(l ∧VP† k)

• l = (R, s), k = (R, t) with s, t ∈ LVP:

f(l) ∧VP† f(k)
= (R, updatei(remove(s, V)) ∧VP† (R, updatei(remove(t, V))
= (R, updatei(remove(s, V) ∪ updatei(remove(t, V))
= (R, updatei(remove(s ∪ t, V)) = f((R, s ∪ t)) = f(l ∧VP† k)

since updatei(remove(s, {x}) ∪ updatei(remove(t, {x})
= updatei(remove(s ∪ t, {x}) according to Lemma 2

– any other instruction i defining value x

We consider cases for l, k

• l = (U , ∅), k = (U , ∅):
f(l) ∧VP† f(k) = (U , ∅) ∧VP† (U , ∅) = (U , ∅) = f((U , ∅)) = f(l ∧VP† k)

• l = (R, s), k = (U , ∅) with s ∈ LVP:

f(l) ∧VP† f(k) = (R, updatei(remove(s, {x})) ∧VP† (U , ∅)
= (R, updatei(remove(s, {x})) = f((R, s)) = f(l ∧VP† k)

• l = (U , ∅), k = (R, s) with s ∈ LVP:

f(l) ∧VP† f(k) = (U , ∅) ∧VP† (R, updatei(remove(s, {x}))
= (R, updatei(remove(s, {x})) = f((R, s)) = f(l ∧VP† k)

• l = (R, s), k = (R, t) with s, t ∈ LVP:

f(l) ∧VP† f(k)
= (R, updatei(remove(s, {x})) ∧VP† (R, updatei(remove(t, {x}))
= (R, updatei(remove(s, {x}) ∪ updatei(remove(t, {x}))
≥VP† (R, updatei(remove(s ∪ t, {x})) = f((R, s ∪ t)) = f(l ∧VP† k)

since updatei(remove(s, {x}) ∪ updatei(remove(t, {x})
⊆ updatei(remove(s ∪ t, {x}) according to Lemma 2 ut

Theorem 3. The general iterative algorithm terminates with the maximum fix-
point solution for each instance of the data flow framework MDF VP† .

Proof. This immediately follows from MDF VP∗ being a monotone data flow
framework according to Lemma 5 and Lemma 6. ut

Following the same line of arguments, we can as well combine the improved
analysis with path designators with unreachable code elimination:

Corollary 4. The general iterative algorithm terminates with the maximum fix-
point solution for each instance of a data flow framework representing a combi-
nation of the analysis with path designators and unreachable code elimination.

