
λcu— An Intermediate Representation for
Compiling Nested Data Parallelism

John Reppy and Joe Wingerter

University of Chicago

1 Introduction

Modern GPUs provide supercomputer-level performance at commodity prices, but they are notoriously hard
to program. To address this problem, we have been exploring the use of Nested Data Parallelism (NDP),
and specifically the first-order functional language NESL [?], as a way to raise the level of abstraction for
programming GPUs. NESL was originally designed by Guy Blelloch as a way to program irregular parallel
algorithms on the wide-vector and SIMD architectures of the early to mid 1990s. Blelloch and others devel-
oped a global flattening transformation that maps irregular NDP code into regular flat data parallel (FDP)
code suitable for SIMD execution. The flat representation uses segment descriptors to represent the origi-
nal nesting structure and relies on segmented-data-parallel operations (e.g., segmented scans and reductions)
in its implementation. Previously, we ported Blelloch’s compiler to generate CUDA, which demonstrated
that NESL has the potential to be an effective language for programming GPUs [?]. This work also showed,
however, that there is a need for better compilation techniques to make NDP competitive with hand-written
CUDA code. To address this challenge, we have been implementing a new NESL compiler that provides a
platform for exploring optimization techniques for NDP on GPUs.

A major part of this new compiler is the design of an intermediate representation for the FDP code, which
is the topic of this paper. Our IR, which is called λcu, has a number of useful properties:

– λcu explicitly distinguishes between CPU and GPU data and computations.
– λcu supports easy analysis to enable kernel fusion.
– λcu provides a uniform framework for applying implementing a rich set of different flavors of fusion
– λcu provides a modular implementation of code generation that avoids the combinatorial complexity of

supporting many different specializations of kernels.
– λcu is designed to support future improvements to the compiler.

In this paper, we present the design of λcu, describe the techniques that we use to support fusion, and how the
design of λcu enables modular code generation.

2 Background

In this section, we describe the context in which we are operating, including a quick introduction to NESL, a
brief description of the CUDA programming model for GPUs, and an overview of our compiler’s architecture.

2.1 NESL

NESL is a first-order data-parallel functional language that supports data parallelism in two ways: through a
parallel array comprehension (apply-to-each) and through a set of parallel primitive operators. Apply-to-each
allows the programmer to map an arbitrary computation over a vector. For example, the following function
squares each element of the vector xs:
function sqr (xs) = {x * x : x in xs};

It is also possible to map a computation over multiple vectors of the same length, as in this example that
computes the element-wise product of xs and ys.

function prod (xs, ys) = {x * y : x in xs; y in ys};

An apply-to-each may include an optional filter to specify which elements to apply the computation to;
for example, we could compute the product of the positive elements of xs and ys as follows:

function prod_if_pos (xs, ys) =
{x * y : x in xs; y in ys | x >= 0 and y >= 0};

The computations that are mapped by apply-to-each may themselves be parallel computations, which is
called nested-data parallelism (NDP). This model is well-suited to matrix operations, as well as irregular
parallel problems, such as divide-and-conquer algorithms. For example, we can use nested parallelism to
multiply a matrix by a vector:

function dotp (xs, ys) =
sum({x * y : x in xs; y in ys});

function mxv (m, v) = {dotp(row, v) : row in m};

The mxv function exhibits nested parallelism. The outer apply-to-each applies dotp in parallel to each row
of the matrix. Within each call to dotp, the elements of the row are all multiplied in parallel, then added up
with the parallel sum operation.

Nested parallelism does not have to be regular in NESL. For example, the computation of a sparse matrix
(represented by rows of index-element pairs) times a dense vector can be coded as

function sparse_mxv (sm, v) = {
sum({x * v[i] : (i, x) in sv}) : sv in sm

}

This function has the same nested structure as before, but the amount of work per row varies.
In addition to the parallel apply-to-each construct, NESL has a library of parallel vector operations. These

include reductions, such as the sum function above, prefix-scans, permutations, and various other operations
on sequences [?].

2.2 GPU hardware and programming model

Graphics processing units (GPUs) are high-performance parallel processors that were originally designed
for computer graphics applications, but are now often used for other computational tasks. GPU applications
are typically written in either CUDA [?] or OpenCL [?], which been developed for the general-purpose
programming of GPUs. While these languages provide a C-like expression and statement syntax, they expose
many of the peculiarities of the GPU hardware model.

A typical GPU consists of multiple streaming multiprocessors (SM), each of which contains multiple
computational cores. An SM executes a group of threads, called a warp, in parallel, with one thread per
computational core. Execution is Single-Instruction-Multiple-Thread (SIMT), which means that each thread
in the warp executes that same instruction. To handle divergent conditionals, GPUs execute each branch of the
conditional in series using a bit mask to disable those threads that took the other branch. An SM can efficiently
switch between different warps, which allows it to hide memory latency. GPUs have some hardware support
for synchronization, such as per-thread-group barrier synchronization and atomic memory operations. One of
the major differences between GPUs and CPUs is that the memory hierarchy on a GPU is explicit, consisting
of a global memory that is shared by all of the SMPs, a per-SM local memory, and a per-core private memory.

A function that runs on the GPU is called a kernel. The host CPU invokes the kernel and specifies the
configuration of the execution, which is a 1, 2, or 3D grid structure onto which the parallel threads are
mapped. This grid structure is divided into blocks, with each block of threads being mapped to the same
SM. The explicit memory hierarchy is also part of the CUDA programming model, with pointer types being
annotated with their address space (e.g., global vs. local).

The various features of the GPU hardware and programming models discussed above pose a number of
challenges to the effective use of GPU hardware. These challenges include:

Memory access Within a GPU kernel, access to the global memory is significantly slower than access to
local or private memory. Furthermore, GPU global memory performance is very sensitive to the patterns
of memory accesses across the warp [?].

Control divergence Threads within a warp must execute the same instruction each cycle. When execution
encounters divergent control flow, the SM is forced to execute both control-flow paths to the point where
they join back together. Thus care must be taken to reduce the occurrence of divergent conditionals.

No recursive calls Recursion is not, in general, permitted in GPU kernels.1 This limitation means that any
program with recursive calls must be transformed into a non-recursive one [?,?]. The flattening transfor-
mation in our compiler results in a program where the recursion is confined to the CPU.

2.3 Compiling NESL

Our NESL compiler, called Nessie, is organized as a series of transformations between intermediate lan-
guages. Included in these is a monomorphization pass that instantiates all polymorphic functions to monomor-
phic types, producing a monomorphically-typed AST. We apply the flattening transformation to the monomor-
phic code. Flattening is a global program transformation that converts nested data parallelism into flat data
parallelism [?,?,?]. A key aspect of this representation is that nested arrays are transformed into segmented
arrays, which are flat arrays paired with segment descriptors that define the original array’s nesting structure.
In addition to affecting the data representation, this transformation also affects the program structure, replac-
ing conditionals inside parallel code with predicated operations. Details about these aspects of the Nessie
compiler can be found in Sandler’s Honors Thesis [?]. The output of the flattening transformation is a se-
quential program that controls the execution of data-parallel vector operations. This program is annotated
with shape information that allows the compiler to determine when computations over different vectors are
compatible. Producing efficient code from this representation requires aggressive fusion of the data-parallel
operations, as well as optimizations of memory access patterns and memory management.

The focus of this paper is on the representation of the program after flattening and the stages needed to
transform that representation to efficient CUDA code.

3 The λcu IR

λcu is an explicitly-typed, monomorphic, three-level language consisting of a top-level representation for
the CPU-level control flow, a mid-level language for representing the iteration structure of GPU kernels,
and a low-level language for representing the computations performed on the GPU. Kernels in the mid-
level language are represented as a sequence of Second-Order Array Combinators (SOAC), which define
the iteration structure of the various stages of the kernel. SOACs have been used in a number of previous
implementations of data-parallelism [?,?]; our approach differs from this past work in a couple of aspects.
First, every SOAC has a pull-thunk argument that abstracts the way that data is acquired. The presence of
the pull-thunk allows us to fuse any SOAC with a proceeding map combinator. The other difference is that
unlike previous uses of SOACs, the pull-thunk iterates over the index space of the computation instead of the
value space. Abstracting over indices enables greater expressiveness in the design and more opportunities for
kernel fusion. In this section, we present the abstract syntax of λcu and give a brief introduction to its static
and dynamic semantics.

3.1 Abstract syntax

We assume a countable set of variables (VAR), which we denote by x, y, and z, with subscripts and decora-
tions as necessary. We use the notation xi to denote a sequence of xs indexed by i, and we write xs for xi
when we do not need the index.

Figure 1 gives the abstract syntax for the three levels of λcu. The CPU language (Figure 1a) defines a

prog ::= kern dcl

dcl ::= function f (params) blk dcl
::= let params = exp dcl
::= exp

params ::= xi:χi

blk ::= { bind exp }

bind ::= let params = exp

exp ::= blk
| run K args
| f args
| if exp then blk else blk
| exp � exp
| · · ·

(a) CPU-expression syntax

kern ::= kernel K xs { bind return ys }

bind ::= let xs = SOAC arg

SOAC ::= MAP | PERMUTE | REDUCE | SCAN
| FILTER | PARTITION | ONCE

arg ::= Λ
| (xs)

(b) Kernel-expression syntax

Λ ::= { xs => exp using ys }

exp ::= if exp then exp else exp
| let x = exp in exp
| exp � exp
| x[i]
| x
| · · ·

(c) GPU-expression syntax

Fig. 1. The abstract syntax of λcu

b ::= bool | int | unit base types

τ ::= b GPU-level types
| τ × · · · × τ

θ ::= b Kernel-level types
| θ × · · · × θ
| [b]

χ ::= b CPU-level types
| χ× · · · × χ
| [b]
| &[b]

Fig. 2. The λcu types

program as a collection of kernel definitions, followed by declarations. The CPU level language is fairly
standard, except for the run K args expression, which is used to dispatch a kernel on the GPU. GPU kernels
(Figure 1b) consist of a series of Second-Order Array Combinator (SOAC) applications. The SOACs provide
an abstraction of data-parallel computations and are described below. A GPU thunk { xs => exp using ys }
is a first-order function with parameters xs , body exp, and free variables ys .2 The only operation that works
on vectors in the GPU expressions is subscripting; otherwise expressions are limited to base values and tuples.

3.2 SOACs

We define seven basic SOACs that provide support for most of NESL’s features.3 The thunk arguments to
SOACs serve a number of distinct rôles in λcu. We use thunks to pull and transform values from vectors,
we use them to implement predicates, and we use thunks to implement the monoid operators for the SCAN
and REDUCE combinators. Because thunks can produce tuples of results, these SOACs can produce multiple
result vectors. In the description below, however, we assume single results, since it simplifies the description
and it is straightforward to generalize to multiple results. λcu provides the following SOACs:

MAP Λ n
applies the pull thunk Λ to the range 0..n−1 producing an n-element vector result. Note that by abstract-
ing over the index space, instead of the value space, MAP subsumes the traditional vector-map operation,
as well as generators like iota and the back-permute (or gather) operation.

PERMUTE Λ1 Λ2 n
applies Λ1 to the range 0..n−1 to produce an n-element vector X , applies Λ2 to the range to produce an
n-element vector I of permutation indices, and then returns an n-element vector Y , such that Y [I[i]] =
Xk[i].

REDUCE Λ1 v Λ2 n
applies the pull thunk Λ to the range 0..n−1 producing an n-element vector result X and then reduces
X to a scalar result using the monoid operator Λ2.

SCAN Λ1 v Λ2 n
is similar to REDUCE, but produces the exclusive prefix-scan using the monoid operator Λ2.

FILTER Λ1 Λ2 n
applies the pull thunk Λ to the range 0..n−1 producing an n-element vector X . It then filters this vector
by applying the predicate Λ2 to produce a residual vector of unknown size.

1 Recursion is supported on some newer cards, but only for kernels that may be called from other kernel functions —
not the host.

2 We borrow the idea of explicitly listing the free variables of a thunk from Madsen and Filinski [?], since it simplifies
both the semantics and the fusion rules.

3 There are some library functions, such as sorting, that get mapped to library kernels in our implementation. Segmented
versions of the SOACs are discussed in Section 3.4.

PARTITION Λ1 Λ2 n
is similar to filter, except that it returns two vectors — one of true values and one of false values.

ONCE Λ
is used to evaluate sequential code on a single thread (strictly speaking, ONCE is not an array combinator).

Not that every SOAC (except ONCE) has a pull thunk that can represent mapping a computation over the
inputs; this feature plays an important rôle in fusion (Section 4).

3.3 Types

The syntax of λcu types is given in Figure 2; as with the program syntax, types are stratified. Values of base
type (b) are used on both the CPU and GPU. We use τ to denote the type of simple GPU values, which are
used in thunks, and which include the base values and tuples. The tuple type operator × is associative (i.e.,
tuples are not nested). Kernel-level types are denoted by τ and include both GPU-level types and vectors
of base values. Lastly, CPU-level types include base values, CPU-side vectors, and references to GPU-side
vectors.

Because NESL is first-order, we do not include function types in the type syntax. We do, however, use the
following syntactic forms to describe the signatures of thunks and SOACs:

ϑ ::= τ ⇒ τ thunk type

ς ::= α · · · α→ θ SOAC signature

α ::= τ | ϑ SOAC parameter type

The types of the SOACs are given in Figure 3. The notation τ↑ denotes the lifting of a simple type τ into a
sequence (or tuple of sequences):

b↑ = [b]

(τ1 × τ2)↑ = τ↑1 × τ
↑
2

The typing rules for λcu are not surprising; perhaps the two most interesting rules are the rule for typing
SOAC applications,

TypeOf(SOAC) = αi → θ Γ ` arg i : αi
θ = θ1 × · · · × θn Γ ′ = Γ [xj 7→ θj]

Γ ` let xj = SOAC arg i : Γ
′

and the rule for typing thunk arguments to an SOAC,

(Γ |ys)[xi 7→ τi] ` e : τ
Γ ` { xi : τi => e using ys } : τ1 × · · · τn ⇒ τ

3.4 Segmented operations

The previous discussion describes the flat version of λcu without the segmented arrays needed to implement
NDP. Although we are still working out the details, we believe that the extension to segmented arrays is
straightforward. The key observation is that for an operation f on vectors, the segmented version of f is just
the piecewise application of f to each vector segment; i.e.,

concat ◦ (map f) ◦ split

To support segmented operations, we extend λcu with segmented versions of some of the SOACs (some of
them, such as MAP do not have segmented versions). Figure 4 gives the type signatures of these segmented
SOACs, where sd is the type of segment descriptors.

MAP : (int⇒ τ) int→ τ↑

PERMUTE : (int⇒ τ) (int⇒ int) int→ τ↑

REDUCE : (int⇒ τ) τ (τ × τ ⇒ τ) int→ τ

SCAN : (int⇒ τ) τ (τ × τ ⇒ τ) int→ τ↑

FILTER : (int⇒ τ) (τ ⇒ bool) int→ τ↑

PARTITION : (int⇒ τ) (τ ⇒ bool) int→ τ↑ × τ↑

ONCE : (unit⇒ τ)→ τ

Fig. 3. SOAC type signatures

SEG_PERMUTE : (int⇒ τ) (int⇒ int) sd→ τ↑

SEG_REDUCE : (int⇒ τ) τ (τ × τ ⇒ τ) sd→ τ↑

SEG_SCAN : (int⇒ τ) τ (τ × τ ⇒ τ) sd→ τ↑

SEG_FILTER : (int⇒ τ) (τ ⇒ bool) sd→ τ↑ × sd

SEG_PARTITION : (int⇒ τ) (τ ⇒ bool) sd→ τ↑ × sd× τ↑ × sd

Fig. 4. Segmented SOAC operators

4 Fusion

Much in the way that inlining is a key optimization for functional-language compilers, fusion is critical
to performance for data-parallel language implementations — it increases the amount of computation per
kernel and, most importantly, decreases the memory bandwidth required by the program. The design of λcu

has been motivated by the goal of making it easy to reason about when fusion is legal and providing a uniform
framework for all of the many different possible fusion operations.

Our compiler’s flattening phase produces a program with many trivial kernels, each consisting of a single
simple SOAC application. The fusion phase proceeds by first identifying data dependencies between kernels,
then applying fusion rules to determine the set of possible kernel fusions. Using the technique of Robinson
et al. [?], we pick an optimal strategy for fusing kernels, which is then realized by applying rewrite rules. We
describe each of these steps in the sequel.

4.1 The PDG

A Program-Dependence Graph (PDG) is a graph that combines a control-flow graph for the conditional and
iterative structure of a program with dataflow graphs that reflect the data-dependencies between statements
in control regions [?]. In the CPU-level of λcu, the control regions correspond to the blk terms and the data
dependencies are explicit in the result bindings and arguments to the run expressions. Computations that are
not inside a kernel can be moved to the GPU by encapsulating them in a ONCE kernel.

4.2 Fusion rules

The core of the λcu fusion process consists of a set of rules which determines how to combine SOACs within
a kernel. Our compiler supports two kinds of fusion: producers and consumers can be vertically fused and
kernels that have the same iteration structure, but no data dependencies, can be horizontally fused. For a
given control region in the PDG, the dataflow graph can be examined to determine the candidate fusion
pairs; vertical fusion when there is a data dependency, and horizontal fusion when there is no dependency but

MAP-MAP
A = MAP { i => e1 using xs } n ⊕ B = MAP { i => e2 using ys } n
B = MAP { i => let a = e1 in [A [i]/a]e2 using xs ∪ (ys \ {A}) } n

MAP-PERMUTE
A = MAP { i => e1 using xs } n ⊕ B = PERMUTE { i => e2 using ys } Λ n

B = PERMUTE { i => let a = e1 in [A [i]/a]e2 using xs ∪ (ys \ {A}) } Λ n

MAP-REDUCE
A = MAP { i => e1 using xs } n ⊕ b = REDUCE { i => e2 using ys } idr Λ n

b = REDUCE { i => let a = e1 in [A [i]/a]e2 using xs ∪ (ys \ {A}) } idr Λ n

FILTER-FILTER

A = FILTER { i => e1 using xs } { v => p1 using ys } n
⊕

B = FILTER { i => e2 using zs } { v => p2 using ws } (#A)
B = FILTER { i => let a = e1 in [A [i]/a]e2 using xs ∪ (zs \ {A}) }

{ i => let a = e1 in p1 && [A [i]/a]p2 using ys ∪ (ws \ {A}) } n
FILTER-REDUCE

A = FILTER { i => e1 using xs } { w => p using ys } n
⊕ b = REDUCE { i => e2 using zs } idr Λ (#A)

b = REDUCE { i => let a = e1 in if [a/w]p then [A [i]/a]e2 else idr using xs ∪ (ys ∪ zs) \ {A}) } idr Λ n

Fig. 5. Selected fusion rewriting rules

iteration structures are nonetheless compatible; the most frequent cases of horizontal fusion occur when two
SOACs operate on the same input. For example, two REDUCE operations that take arrays of the same shape
can be horizontally fused.

The following are the legal producer-consumer fusion pairs, where we use the body of a trivial kernel (i.e.
a single SOAC) to identify its kind:

– A MAP whose output is consumed by any SOAC S can be fused with S.
– Two PERMUTEs in series can be fused in a way that is similar to the fusion of two MAPs in series. The

index transformations can be composed, and the value generator of the consuming combinator must be
modified to take into account the producer’s transformation of index space.

– A FILTER whose result is consumed by REDUCE can be fused by using the reduction operator’s identity
for those values that are filtered out. rewriting the FILTER as a MAP that replaces filtered-out values with
the reducing operator’s identity input; the MAP can then be fused into the array’s thunk representation.

– Two FILTERs in series can be fused by forming the conjunction of their predicates.
– A REDUCE whose scalar result is consumed by a ONCE may be fused with the ONCE.

Two kernels that are not related by data dependency may be fused horizontally if they have compatible
iteration structure, which means that the sizes (or shapes) of the vectors being operated on are the same and
that the SOACs being used are compatible. The latter property always holds when the two kernels have the
same SOAC, but it also holds for some other combinations, such as MAP and REDUCE.

4.3 Scheduling

Once all the candidate pairs have been identified, we need to determine which pairs of operations to fuse.
It is not possible to simply perform all fusions, because of mutual incompatibility between some choices of
fusion candidates. For example, consider the following NESL expression:
let total = sum(as) in { a*a / total : a in as }

The initial λcu translation of this code has three kernel invocations, which separately compute the sum, array
of squares, and array of quotients.

The sum and array of squares are both computed by traversing as, so they could be computed together
in a single fused kernel, producing both results at once. A second kernel would then divide each square by

the sum. Alternatively, if the sum is computed in its own kernel, the multiplication and division can both be
performed in a second kernel. In both cases the sum of all elements must be computed before performing the
division on any element, so there is no way to reduce the computation to a single kernel invocation.

We follow the approach of Robinson et al. and use an ILP solver to determine the set of fusion opera-
tions that minimized execution cost [?]. The objective function accounts for global memory traffic (i.e. for
kernel arguments and results), the need for intermediate storage, along with constraints derived from the
incompatibilities between alternative choices for fusing particular SOAC applications.

4.4 Rewriting

The result of solving the ILP problem is a mapping from kernels to slot indices in the execution schedule for
the control region. All of the kernels in the same slot get fused into a single kernel. This operation is done
in two steps: first the SOACs from the individual kernels are collected together and then rewriting rules are
applied to reduce them to a minimal number of SOAC invocations. The first step requires some bookkeeping
to remove redundant arguments and to make sure that all of the results used outside the fused kernel are
returned as results. The second step involves merging the code of thunks.

Figure 5 presents several representative examples of the rewriting used to fuse SOAC applications (the ⊕
operator denotes fusion). To keep the presentation simple, we limit ourselves to the case where the incoming
SOACs and thunks produce a single result. The notation “[A [i]/a]e” means substitute the variable “a” for
the subscript expression “A [i]” in the expression “e.”

5 An example of fusion

To illustrate how our fusion phase works, we consider the following small program, which is a NESL version
of the example from Robinson et al. [?]. The code computes two scaled versions of its input array using
different scaling factors, each of which depends on the entire array contents.
function norm2 (xs) : [int] -> ([int], [int]) =
let sum1 = sum(xs);

gts = { x : x in xs | (x > 0) };
sum2 = sum(gts);

in
({ x / sum1 : x in xs }, { x / sum2 : x in xs })

The flattening transform converts this NESL code into the following λcu fragment. Note that while there
are five kernel invocations, only three unique kernels are present, because the original program contains only
three different data-parallel operations: sum (K1), filtering with (x > 0) (K2), and element-wise division by a
constant (K3).
kernel K1 (xs : [float]) -> float {
let z = REDUCE { i => xs[i] using xs } (0) { (x, y) => x + y } (#xs)
return z

}
kernel K2 (xs : [float]) -> [float] {

let ys = FILTER { i => xs[i] using xs } { x => x > 0 } (#xs)
return ys

}
kernel K3 (xs : [float], s : float) -> [float] {

let zs = MAP { i => xs[i] / s using xs, s } (#xs)
return zs

}

function norm2 (xs : [float]) -> ([float], [float]) {
let sum1 : float = run K1 (xs)
let gts : [float] = run K2 (xs)
let sum2 : float = run K1 (gts)
let res1 : [float] = run K3 (xs, sum1)
let res2 : [float] = run K3 (xs, sum2)
return (res1, res2)

}

xs

run K2 (xs)run K1 (xs)

run K1 (gts)

run K3 (xs, sum2)run K3 (xs, sum1)

(res1,res2)

sum1

sum2

gts

res2res1

xs xs

xs xs

Fig. 6. The PDG for the norm2 example.

xs

run K2 (xs)run K1 (xs)

run K1 (gts)

run K3 (xs, sum2)run K3 (xs, sum1)

(res1,res2)

xs

run K2 (xs)run K1 (xs)

run K1 (gts)

run K3 (xs, sum2)run K3 (xs, sum1)

(res1,res2)

KF1

KF2

xs

run K2 (xs)run K1 (xs)

run K1 (gts)

run K3 (xs, sum2)run K3 (xs, sum1)

(res1,res2)

Fig. 7. Three possible schedules for the norm2 example. The third illustrates filter-reduce fusion and is the choice of the
ILP solver.

The next step is to compute a schedule for the program. The control flow of this program at the CPU level
is strictly linear, i.e., the kernel invocations all occur in the same single control region, so there is a single
PDG for the program, which is shown in Figure 6.

The fusion rules described in Section 4.2 are used to determine the set of available fusion opportunities
and their dependencies and conflicts. For this example, there are three possible ways to fuse the kernels,
which are illustrated in Figure 7. Following the approach of Robinson, the dependencies and conflicts are
encoded into constraints that must be satisfied while attempting to minimize the expected computational and
communication cost of the fused program. This system is given to an ILP solver (lp solve in our case [?]),
which returns the right-most clustering into two kernels.

The next step is to merge kernels according to the schedule. For the example, this process produces
the following λcu code, which has two kernels: KF1, which corresponds to the blue cluster, and KF2, which
corresponds to the orange cluster.
kernel KF1 (xs : [float]) -> ([float], [float]) {
let gts = FILTER { i => xs[i] using xs } { x => x > 0 } #(xs)
let sum1 = REDUCE { i => xs[i] using xs } (0) { (x, y) => x + y } #(xs)
let sum2 = REDUCE { i => gts[i] using gts } (0) { (x, y) => x + y } #(gts)

return (sum1, sum2)
}

kernel KF2 (xs : [float], sum1 : float, sum2 : float) -> ([float], [float]) {
let res1 = MAP { i => xs[i] / sum1 using xs, sum1 } #(xs)
let res2 = MAP { i => xs[i] / sum2 using xs, sum2 } #(xs)
return (res1, res2)

}

function norm2 (xs : [float]) -> ([float], [float]) {
let (sum1 : float, sum2 : float) = run KF1 (xs)
let (res1 : [float], res2 : [float]) = run KF2 (xs, sum1, sum2)
return (res1, res2)

}

The final step is to fuse the SOACs inside the merged kernels using the rewrite rules described in Section 4.4.
For the example, this step results in the following λcu code:
kernel KF1 (xs : [float]) -> ([float], [float]) {

let (sum1, sum2) =
REDUCE { i => (xs[i], if x > 0 then xs[i] else 0) using xs } (0, 0) { (x, y) => x + y } (#xs)

return (sum1, sum2)
}

kernel KF2 (xs : [float], sum1 : float, sum2 : float) -> ([float], [float]) {
let (res1, res2) = MAP { i => (xs[i] / sum1, xs[i] / sum2) using xs, sum1, sum2 } (#xs)
return (res1, res2)

}

function norm2 (xs : [float]) -> ([float], [float]) {
let (sum1 : float, sum2 : float) = run KF1 (xs)
let (res1 : [float], res2 : [float]) = run KF2 (xs, sum1, sum2)
return (res1, res2)

}

Note that the merging step can produce ill-formed kernels, such as KF1, which has two reductions in series.
This situation is temporary, however, as the SOAC fusion step merges these into a single reduction.

6 Code generation

One of the goals in designing λcu is to enable easy generation of CUDA kernels while supporting the rich set
of fusion optimizations described above. Each SOAC effectively defines an algorithmic skeleton [?] that coor-
dinates the data access, iteration, and synchronization of the kernel. The thunks then define the computational
kernels inside this iteration structure.

Consider the simple case of a kernel that computes the product of two vectors.
kernel K (u : [int], v : [int]) {

let w = MAP { i => u[i] * v[i] using u, v } (# u)
return w

}

This might produce the following simple CUDA kernel, where we have highlighted the computational kernel
in blue and the target of the computation in green:4

__global__ void K (__global__ int *u,__global__ int *v, __global__ int *w, int n)
{

int blockId = blockIdx.y * gridDim.x + blockIdx.x;
int idx = blockId * blockDim.x + threadIdx.x;
if (idx < n) {

w[idx] = u[idx] * v[idx] ;

}
}

The rest of the code is essentially the same, no matter what the actual thunk being mapped is.
Our code generator exploits this decomposition of kernels by defining a higher-order function for each

SOAC that takes arguments for generating the computational kernels and generates the CUDA code for
4 In practice, the code generator produces more efficient kernels that process multiple elements per thread.

the SOAC. Figure 8 gives a partial Standard ML signature for the code generator. The gen_thunk type is a
functional representation of the code generator for a λcu thunk; it takes an environment for resolving λcu

variables to CUDA expressions and a function for generating code to save the results. The genThunk function
is used to generate code for a λcu thunk. It takes the AST representing the thunk as an argument and returns
a function that can then be passed to one of the SOAC code generation functions.

(* representation of λcu code *)
structure LCu = struct ... end
(* representation of CUDA code *)
structure Cuda = struct ... end

signature CODEGEN = sig
(* environment for mapping λcu vars to CUDA expression *)

type env

type gen_thunk = env * (LCu.exp list -> Cuda.stm list) -> Cuda.stm list

(* generate code for the MAP SOAC *)
val genMap : gen_thunk * LCu.var -> Cuda.stm list

(* generate code for the PERMUTE SOAC *)
val genPermute : gen_thunk * gen_thunk * LCu.var -> Cuda.stm list

(* generate code for the REDUCE SOAC *)
val genReduce : gen_thunk * gen_thunk * LCu.var -> Cuda.stm list

...

(* translate a λcu thunk to CUDA *)
val genThunk : LCu.thunk -> gen_thunk

end

Fig. 8. CUDA code generation interface

There are some additional details that we must address when generating the code for running a kernel, one
of which is the need to allocate storage for the result array on the GPU. We pass the address of this storage to
the kernel as an extra argument (e.g., the w parameter in the above example).

7 Related work

The use of SOACs is common in languages and compiler representations for data-parallel programming.
Examples include Nova [?], Futhark [?], and Delite [?]. Out combinators are different from these in that we
abstract over the index space, instead of the value space, and that we include a pull thunk that allows us to
fuse map operations into the data-fetch part of other operations. Delite also includes map operations in some
of its combinators (which they call parallel patterns), but their approach is more ad hoc and does not support
segmented operations. The data-fetch operations are reminiscent of the pull arrays used in some embedded
DSLs for array processing [?].

8 Future work

We are planning a number of future improvements to our compiler, which we believe will be easily supported
by λcu. One of these is vectorization avoidance, which is a pre-flattening analysis that identifies sequential
expressions that appear in parallel apply-for-each contexts. These expressions are encapsulated as lambda
abstractions, which are not transformed by the flattening phase [?]. This technique reduces the need for
producer-consumer fusion, but it also allows the compiler to avoid encoding conditionals using PARTITION.

A second improvement is the use of uniqueness types [?] at the CPU-level of λcu to analyze memory
and optimize memory usage. To fully take advantage of this information, we also need to support update-
in-place in the GPU-level of λcu. Supporting mutation will also improve the implementation of some of the
permutation operators produced by flattening and will enable more kinds of horizontal fusion.

Acknowledgments

The original NESL/GPU implementation was primarily the work of Lars Bergstrom, who has also provided
helpful advice about CUDA hacking. Portions of this research were supported by the National Science Foun-
dation under award CCF-1446412. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of these organizations or the U.S. Government. We also thank the NVIDIA Corporation for their
generous donation of both hardware and financial support.

