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Abstract—In this paper, we present the current status of the
Bohrium runtime system for automatic parallelization of array
programming languages and libraries. We demonstrate how the
design of Bohrium makes it possible to utilize different hardware
platforms – from simple multi-core systems to clusters and GPU
enabled systems – without any changes to the original user
program.

I. INTRODUCTION

In the scientific community, array programming[5] is a
popular programming paradigm[13], [11]. It provides a natural
way to express linear algebra problems without using pointer
arithmetic or other low-level language constructs. Thus, ar-
ray programming languages and libraries such as Matlab,
Python/NumPy, R, and Fortran are very popular.

Bohrium1[9], [10] defines a virtual machine, which executes
an instruction from a bytecode instruction set that operates
on arrays. This approach exploits the popularity of array
programming by translating array operations into bytecodes,
performing optimizations on the bytecodes, and then compil-
ing the bytecodes into architecture specific binary kernels, and
finally executing them.

In the rest of this paper, we will provide an overview and
status of the different component of Bohrium.

A. Target audience

Bohrium is not built for speed, however as we will see in
section VII it can be fast. Bohrium is rather meant to help
scientific personal easily parallelize their programs, without
having to know about special annotations such as pragma.
Thus Bohrium can help people write fast, parallelized code,
without rewriting their programs. To run with Python all the
user needs to do, is switch the import numpy for import
bohrium or even easier, launch their Python program with
a -m bohrium command flag, which will substitute NumPy
for Bohrium.

B. Interoperability

As already stated and as will be discussed in the following,
Bohrium works with multiple languages and libraries. The
main languages/libraries are NumPy, C++ and CIL2, however
it is possible to use Bohrium from any environment that can
call C libraries.

1Available at http://www.bh107.org.
2Common Intermediate Language, also called .NET, MSIL or CLR
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II. OVERVIEW

Bohrium provides the mechanics to seamlessly couple an
array-programming language or library with an architecture-
specific implementation. It lazily records array operations,
such as NumPy array operations, compiles them into
architecture-specific binaries, e.g. GPGPU kernels, and exe-
cutes them.

Bohrium consists of a number of components that operate
on hardware agnostic array bytecodes. Components can be
architecture-specific but they all use the same bytecode and
communication protocol and can be interchanged. This design
makes it possible to combine components in a setup that
matches a specific execution environment without changing
the user program.

The following component types are available for Bohrium:
Frontend At the highest level, we have the frontend program-

ming language and library. Bohrium is not biased towards
any specific choice of programming language or library
as long as it is compatible with the array-programming
model.



Bridge Connected to the frontend is a Bridge component. Its
job is to translate the frontend language into Bohrium
bytecode.

Bytecode Optimization Between the bridge and the execu-
tion backend, Bohrium supports a number of compo-
nents that make bytecode-to-bytecode transformations.
The specific component setup will vary depending on
which optimizations and fuse strategies one wants to
apply.

Bytecode Fusion After bytecode-to-bytecode transforma-
tions, Bohrium will fuse array bytecode into kernels
that satisfies specific criteria given by the backend.
A common criteria is data-parallelism, which makes
it possible to calculate all array element individually
without any communication between calculating threads.
Another common criteria is that the shape of the arrays
within a kernel must match.

Backend Given the kernels of array bytecode, the backend
will compile the array bytecode into binary kernels that
targets a specific architecture such as a multi-core CPU
or a GPU.

Figure 1 shows an example of a Bohrium runtime setup that
fits a system with both a CPU and a GPU. Notice that the GPU
is the primary backend but may pass some array bytecodes to
the CPU. The exact component setup depends on the runtime
system e.g. if the system has no GPU, we can simply connect
the fusion component directly to the CPU backend.

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through a configuration file. Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user’s
programs. For compiled languages, the same compiled binary
can be used with multiple configuration files.

III. FRONTEND

As a running example for each frontend we use an imple-
mentation that solves the heat equation iteratively using the
Jacobi Method.

A. C++

The C++ bridge provides an interface to Bohrium as
a domain-specific embedded language (DSEL) providing a
declarative, high-level programming model. Related libraries
and DSELs include Armadillo[14], Blitz++[16], Eigen[1] and
Intel Array Building Blocks[12]. These libraries have sim-
ilar traits: declarative programming style through operator-
overloading, template metaprogramming, and lazy evaluation
for applying optimizations and late instantiation.

A key difference is that the C++ bridge applies lazy eval-
uation at runtime by delegating all operations on arrays to
the Bohrium runtime, whereas the other libraries apply lazy
evaluation at compile-time via expression-templates. This is
a general design-choice in Bohrium – evaluation is improved

by a shared component and not in every language bridge. A
positive side effect of avoiding expression-templates in the
C++ bridge are better compile-time error messages for the
user.

#include <bh/bh.hpp>
double solve(multi_array<double> grid, size_t epsilon)
{
multi_array<double> center,north,south,east,west,tmp;
center = grid[_(1,-1,1)][_(1,-1,1)];
north = grid[_(0,-2,1)][_(1,-1,1)];
south = grid[_(2, 0,1)][_(1,-1,1)];
east = grid[_(1,-1,1)][_(2, 0,1)];
west = grid[_(1,-1,1)][_(0,-2,1)];

double delta = epsilon+1;

while(delta > epsilon){
tmp = 0.2*(center+north+east+west+south);
delta = scalar(sum(abs(tmp-center)));
center(tmp);

}
}

Listing 1: Bohrium C++ implementation of the heat equation
solver. The grid is a two-dimensional Bohrium array and the
epsilon is a regular C/C++ scalar.

Listing 1 illustrates the heat equation solver implemented in
Bohrium/C++, a brief clarification of the semantics follows.
Arrays along with the type of their containing elements are
declared as multi_array<T>. The function _(start,
end, skip) creates a slice of every skip element from
start to (but not including) end. The generated slice is then
passed to the overloaded operator[] to create a segmented
view of the operand. Overload of operator= creates aliases
to avoid copying. To explicitly copy an operand the user
must use a copy(...) function. Overload of operator()
allows for updating an existing operand; as can been seen in
the loop-body.

B. CIL

The NumCIL library introduces the declarative array pro-
gramming model to the CIL languages [15] and, like ILNumer-
ics, provides an array class that supports full-array operations.
In order to utilize Bohrium, the CIL bridge extends NumCIL
with a new Bohrium backend.

The Bohrium extension to NumCIL, and NumCIL itself,
is written in C# but with consideration for other languages.
Example benchmarks are provided that shows how to use
NumCIL with other popular languages, such as F# and Iron-
Python. An additional IronPython module is provided which
allows a subset of NumPy programs to run unmodified in
IronPython with NumCIL. Due to the nature of the CIL, any
language that can use NumCIL can also seamlessly utilize the
Bohrium extension. The NumCIL library is designed to work
with an unmodified compiler and runtime environment and
supports Windows, Linux and Mac. It provides both operator
overloads and function-based ways to utilize the library.

Where the NumCIL library executes operations when re-
quested, the Bohrium extension uses both lazy evaluation and
lazy instantiation. When a side effect can be observed, such as



accessing a scalar value, any queued instructions are executed.
To avoid problems with garbage collection and memory limits
in CIL, access to data is kept outside CIL. This allows lazy
instantiation, and allows the Bohrium runtime to avoid costly
data transfers.

using NumCIL.Double;
using R = NumCIL.Range;

double Solve(NdArray grid, double epsilon)
{

var center = grid[R.Slice(1,-1), R.Slice(1,-1)];
var north = grid[R.Slice(0,-2), R.Slice(1,-1)];
var south = grid[R.Slice(2, 0), R.Slice(1,-1)];
var east = grid[R.Slice(1,-1), R.Slice(2, 0)];
var west = grid[R.Slice(1,-1), R.Slice(0,-2)];

var delta = epsilon+1;

while(delta > epsilon){
var tmp = 0.2*(center+north+east+west+south);
delta = (tmp-center).Abs().Sum();
center[R.All] = tmp;

}
}

Listing 2: NumCIL C# implementation of the heat equation
solver. The grid is a two-dimensional NumCIL array and
epsilon is a regular scalar value.

The usage of NumCIL with the C# language is shown in
listing 2. The NdArray class is a typed version of a general
multidimensional array, from which multiple views can be
extracted. In the example, the Range class is used to extract
views on a common base. The notation for views is influenced
by Python, in which slices can be expressed as a three-element
tuple of offset, length and stride. If the stride is omitted, as
in the example, it will have the default value of one. The
length will default to zero, which means “the rest”, but can
also be set to negative numbers which will be interpreted as
“the rest minus N elements”. The benefit of this notation is
that it becomes possible to express views in terms of relative
sizes, instead of hardcoding the sizes.

In the example, the one line update actually reads multiple
data elements from same memory region and writes it back.
The use of views simplifies concurrent access and removes all
problems related to handling boundary conditions and manual
pointer arithmetic. The special use of indexing on the target
variable is needed to update the contents of the variable,
instead of replacing the variable.

C. Python/NumPy

The implementation of the Python/NumPy bridge consists
primarily of a new bohrium-array that inherits from NumPy’s
numpy-array. The bohrium-array is implemented in C and uses
the Python-C interface to inherit from numpy-array. Thus, it
is possible to replace bohrium-array with numpy-array both in
C and in Python – a feature we need in order to support third
party projects such as matplotlib.

As is typical in object-oriented programming, the bohrium-
array exploits the functionality of numpy-array as much as
possible. The original numpy-array implementation handles

import numpy as np

def solve(grid, epsilon):
center = grid[1:-1,1:-1]
north = grid[-2:,1:-1]
south = grid[2:,1:-1]
east = grid[1:-1,:2]
west = grid[1:-1,2:]

delta = epsilon+1

while delta > epsilon:
tmp = 0.2*(center+north+south+east+west)
delta = np.sum(np.abs(tmp-center))
center[:] = tmp

Listing 3: Python/NumPy implementation of the heat equation
solver.

metadata manipulation, such as slicing and transposing; only
the actual array calculations will be handled by Bohrium. The
bohrium-array overloads arithmetic operators, thus an operator
on bohrium-arrays will use Bohrium.

However, NumPy functions in general will not make use of
the Bohrium backend since many of them uses the C-interface
to access the array memory directly. In order to address this
problem, Bohrium has to re-implement some of the NumPy
API. The result is that the Bohrium implements all array
creation functions, matrix multiplication, random, FFT, and
all ufuncs for now. All other functions, which accesses array
memory directly, will simply get unrestricted access to the
memory.

In order to detect and handle direct memory access to arrays,
Bohrium uses two address spaces for each array memory: a
user address space visible to the user interface, and a backend
address space visible to the backend interface. Initially, the
user address space of a new array is memory protected with
mprotect such that subsequent accesses to the memory will
trigger a segmentation fault. In order to detect and handle
direct memory access, Bohrium can then handle this kernel
signal by transferring array memory from the backend address
space to the user address space.

Similarly to the other bridges, the Python/NumPy bridge
uses lazy evaluation where it records instruction until a side
effect can be observed.

IV. OPTIMIZATIONS ON BYTECODE LEVEL

The bytecode used by Bohrium is a descriptive array
bytecode. This can be used to record additional information
about the instructions at compile-time. One can optimize such
bytecodes in several ways, e.g. if multiple BH_ADDs are done
for the same view, we can combine these into one operation.
Doing so will decrease the number of steps for the fuser and
code-generator.

Due to the distributive property of multiplication we can
also do the following rewriting

ax+ bx → (a+ b)x

Generalizing this, for some array x and scalar values ci, we
want to rewrite



∑
i

(x · ci) → x ·
∑
i

ci

to give us the least amount of multiplication operations.
Multiplying and dividing with the identity element can be

removed from the bytecode program, and the views can be
replaced throughout the rest of it. The same is true for addition
and subtraction. That is, we can do the following rewrite

x ∗ e → x

when ∗ is an operator for which e is the identity.
Another interesting bytecode to look at is BH_POWER. If

the exponent of the power function is an integer, it is actually
faster to do a series of multiplications instead [6], that is

xn → x · x · · · · · x︸ ︷︷ ︸
n

=
n∏

x if n ∈ N+

Another optimization can be applied to this. In practice we
do not want to generate a new temporary array in memory,
to hold the result, so we are only allowed to operate on two
arrays, the input and output arrays. We could just copy the
input array to the output array and then multiply the output
array with the input array n − 1 times, however there is a
better way. Instead we copy the input array to the output array,
and then multiply the output array with itself ⌊log2(n)⌋ times.
This will give us the closest array to the result, which we can
calculate with the least amount of multiplications. The rest can
be done by multiplying with the input array again.

Let input be the input array and output be the output array
and let us as an example calculate x10. Since ⌊log2(10)⌋ = 3,
we need to do three self multiplications of output.

output = input (x)

output = output · output (x2)

output = output · output (x4)

output = output · output (x8)

output = output · input (x9)

output = output · input (x10)

There are other faster ways to do this [4], however this
is the most generic scheme, that works for all n ∈ N+. This
optimization helps us speed up various benchmarks, especially
Black Scholes, which we will discuss in section VII.

Other more complex patterns, that we will look for in
the future, could be solving linear systems without actually
creating the inverse matrix, e.g. solving

Ax = b

without figuring out A−1. This can be done with LU
factorization, but we would need to actually detect this pattern
in the bytecode, again easing the use of Bohrium, since the

user do not have to optimize their linear system solving
themselves.

V. ARRAY BYTECODE FUSION

Array operation fusion is a program transformation that
combines (fuses) multiple array operations into a kernel of
operations. When it is applicable, the technique can drastically
improve cache utilization through temporal data locality and
enables other program transformations, such as streaming and
array contraction [3].

Consider the two for-loops in listing 4a, which are fused
into one for-loop, listing 4c, with the result of much improved
cache utilization since array T and A are only traversed once
instead of two times. For the next level of improvement, the
for-loop in listing 4d does not allocate the array T at all.
Instead, it uses the scalar t to stream the intermediate result
of B[i] * A[i], which is possible because T is only used
within the for-loop – it is a temporary array local to the for-
loop.

Not all fusion of array operation are allowed. Consider the
two loops in listing 4b: the second loop traverses the result
from the first loop in reverse, we must compute the complete
result of the first loop before continuing to the second loop.
This prevents fusion of the two for-loops and streaming of T,
since it is not temporary to any one for-loop.

A. Fusibility

Array streaming depend on fusing array operations, so it is
necessary to determine which operations we can legally fuse,
and which we can profit from fusing. Generally, it is useful
to fuse two array operations when the result of each output
array element can be calculated independently without any
communication between threads or processors:

Definition 1 (Fusibility). Two array operations, f, g, are
fusible when there are no horizontal dependencies between:

• The output arrays of f and the input arrays of g
• The output arrays of g and the input arrays of f
• The output arrays of f and the output arrays of g

where two arrays have a horizontal dependency when they
access the same memory in different order.

Bohrium further restrict the fusibility of array operations
by requiring that the shape of the involved arrays is the same.
However, the number of dimensions in reduction operations is
allowed to differ.

B. Fusion of Array Operations

[8] describes methods for finding a partition of operations
such that a cost function is optimized, or near-optimized using
a fast approximation heuristic. In Bohrium, we apply these
methods to generate kernels that optimize for array streaming.

The problem of finding the optimal operation partitions
is called the Fusion of Array Operations Problem (FAO
problem), and is defined as follows:



#define N 1000
double A[N], B[N], T[N];
for(int i=0; i<N; ++i) {

T[i] = B[i] * A[i];
}
for(int i=0; i<N; ++i) {

A[i] += T[i];
}

(a) Two forward iterating loops.

#define N 1000
double A[N], B[N], T[N];
int j = N;
for(int i=0; i<N; ++i) {

T[i] = B[i] * A[i];
}
for(int i=0; i<N; ++i) {

A[i] += T[--j];
}

(b) A forward and a reverse iterating loop.

for(int i=0; i<N; ++i) {
T[i] = B[i] * A[i];
A[i] += T[i];

}

(c) Loop fusion: the two loops from 4a fused into one.

for(int i=0; i<N; ++i) {
double t = B[i] * A[i];
A[i] += t;

}

(d) Array contraction: the temporary array T from 4c is con-
tracted into the scalar t.

Listing 4: Loop fusion and array contraction in C.

Definition 2. Given a set of array operations, A, equipped
with a strict partial order imposed by the data dependencies
between them, (A,

d
<), find a partition, P , of A for which:

1) All operations within a block in P are fusible (Def. 1).
2) For all blocks, B ∈ P , if a1

d
< a2

d
< a3 and a1, a3 ∈ B

then a2 ∈ B. (I.e. the partition obeys dependency order).
3) The cost of the partition is minimal.

We will not go further into the detail of array operation
fusion but instead refer to [8] that describe the theoretical
groundwork and [7] that demonstrates its uses in Bohrium.

VI. BOHRIUM PROCESSING UNIT

The current backends for Bohrium support both CPU,
GPGPU and even cluster based setups. This illustrates the
flexibility in the programming model, and indicates that
the Bohrium runtime system can target different types of
hardware. While commodity hardware, such as CPUs and
GPGPUs, have a good price-to-performance ratio, they do
not offer the best possible flops-per-watt ratio, nor the lowest
possible latency.

To achieve a lower latency and a lower power consump-
tion, the ASIC3, or the related FPGA4 are more promising
approaches. Unfortunately, both of these approaches require
designing hardware circuits, which is many times more com-
plicated than writing software, and thus entirely out of reach
for the average Bohrium user.

We have designed and implemented the core for a Bohrium
Processing Unit, which can execute Bohrium bytecodes, and
utilize the memory layouts used. A schematic overview of the
core unit is shown in figure 2.

The BPU is designed to work in a triple buffer setup, where
dedicated hardware units perform three actions in parallel:
read, execute, and write. Since the Bohrium bytecode is highly
regular, we know in advance what memory to pre-fetch, and
we have no need for branch prediction logic.

3Application Specific Integrated Circuit
4Field Programmable Gate Array

Programming the BPU would be difficult, as the user needs
to keep track of what data is stored in the local scratch space,
while balancing this with the need to issue memory reads and
writes ahead of time, similar to how a user-controlled cache
would work. We have written a rudimentary compiler that
transforms a kernel from Bohrium into the instruction format
defined for the BPU, such that all these requirements can be
handled.

With this setup, it is possible execute a NumPy program on
an FPGA without knowing anything about hardware design,
or even modifying the program to fit an FPGA.

The BPU core shown in figure 2 is implemented in VHDL
and can be simulated and tested with existing FPGA design
tools. We have not yet implemented floating-point support, and
emulate access to an external memory bus. The next step is to
build a memory controller and connect it to a real memory
interface, such that we can feed multiple BPU cores with
a memory source. The memory controller will resemble the
GPGPU approach, where each core can access the memory
with varying offsets, but unlike the GPGPU, we know which
offsets each core will request in advance, due to the regularity
of the Bohrium bytecode.

The transpiler that converts bytecode to BPU instructions
is implemented in a very simple manner, such that it only
attempts to emit memory operations as much ahead of time
as possible. Rather than implement optimizations in the tran-
spiler, we are investigating filter transformations as the opti-
mization step. The cost function for determining the optimal
BPU program is different than for most others, as we have a
need to keep kernel memory usage small enough to be in the
scratch memory. If the kernels use too much memory, we need
to swap to the attached memory interface, which decreases
performance. Instead, it might be beneficial to partition kernels
into identical sub-kernels, that fit in the limited storage and
then stream the sub-kernels back-to-back.
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Fig. 2. Overview of the cBohrium Processing Unit.

VII. PERFORMANCE

In this section, we will present the current performance
results of Bohrium. We use Benchpress, which is an open
source benchmark tool and suite. The source code for the
implementations and the Benchpress tool is available online5.
For reproducibility, the exact version used can be obtained
from the source code repository6.

A. The CPU backend

In order to evaluate the CPU backend, we compare a serial
C implementation, a C++/OpenMP implementation, and a
Python/NumPy implementation of each benchmark. The C
and C++ implementations are handwritten and compiled with
GNU Compiler Collection using "-O3 -march=native".
The Python/NumPy implementation is regular Python/NumPy
code without any hand tuning or other low-level optimizations.
We use the CPython 2.7 interpreter with the "-m bohrium"
option in order to utilize the Bohrium CPU backend.

We run all benchmarks on a machine with 32-cores di-
vided between four NUMA nodes (Table I). Figure 3 shows

5http://benchpress.readthedocs.org/
6https://github.com/bh107/benchpress.git revision 0aa2942

Machine:
Processor: AMD Opteron 6272
Clock: 2.1 GHz
#Cores: 32
L3 Cache: 16MB
Memory: 128GB DDR3
Compiler: GCC 4.8.4
Software: Ubuntu 14.04, Linux 3.13, Python 2.7.6, NumPy 1.8.2

TABLE I
MACHINE SPECIFICATIONS

the speedup results with the serial C implementation as the
baseline.

The C implementation of the Black Scholes benchmark
is compute-bound as the C++/OpenMP implementation show
by achieving a near perfect linear speedup using 32 threads.
The numbers reported by the Python/NumPy implementations
using Bohrium obtain super-linear speedup of ×67.3 using
32 threads and a speedup of about ×4.8 using a single
thread/core.

The Black Scholes benchmark relies heavily on exponenti-
ations. As seen in section IV we optimize the power function
(xn) when n ∈ N+, which is exactly what we have here. This

http://benchpress.readthedocs.org/
https://github.com/bh107/benchpress.git


Hand-tuned Bohrium
C++/OpenMP Python/NumPy

Threads 1 32 1 32
Black Scholes 0.9 29.1 4.8 67.3
Heat Equation 0.6 7.1 0.7 7.0
Leibnitz PI 1.0 22.6 0.6 14.6
Monte Carlo PI 1.0 29.8 1.0 27.8
Mxmul 1.0 9.5 1.0 14.9
Rosenbrock 1.0 21.0 1.2 15.8
Shallow Water 0.5 9.1 0.7 6.6

Fig. 3. Speedup results, serial C implementation used as baseline.

Processor: Intel Core i7-3770
Clock: 3.4 GHz
#Cores: 4
Peak performance: 108.8 GFLOPS
L3 Cache: 16MB
Memory: 128GB DDR3
Vendor: AMD NVIDIA
Model: HD 7970 GTX 680
#Cores: 2048 1536
Clock: 1000 MHz 1006 MHz
Memory: 3GB GDDR5 2GB DDR5
-bandwidth: 288 GB/s 192 GB/s
Peak perf.: 4096 GFLOPS 3090 GFLOPS

TABLE II
SYSTEM SPECIFICATIONS

is what gives the super-linear speedup.

B. The GPU backend

We have conducted a performance study in order to evaluate
how well the GPU-backend performs, compared to regular
sequential Python/NumPy execution. This study has been
previously published [2] and is by no means a study of how
well Bohrium with the GPU-backend, or NumPy utilizes the
hardware, it is simply an illustration of the magnitude of
speedup the end user can expect to experience, when using
Bohrium with the GPU-backend. Keeping in mind that the
transition from native Python/NumPy to Bohrium is com-
pletely seamless and requires no effort of the user. Wall clock
time is measured for all benchmark executions, which include
data transfers between the CPU and GPU.

We run all benchmarks on a Intel machine with both a AMD
and NVIDIA GPU (Table II).

The Black-Scholes application is embarrassingly parallel,
which makes it perfect for running on the GPU. Even with
the relatively simple scheme for kernel generation, the GPU-
backend currently implements; it generates only one kernel
per iteration of the main loop. The result is a very effective
execution that achieves a speedup of 834 times (ATI) and
643 times (NVIDIA) respectively for the largest 32bit float
problems (figure 4). Additionally, it clearly demonstrates the
comparably poor 64bit performance of the Kepler architecture
(NVIDIA). Note that the GTX 680 delivers 1/24 double
precision operation per single precision operation according
the specifications, which is worse than the ratio of 1:14 seen
in the Black-Scholes benchmark. This indicates that even in
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the embarrassingly parallel Black-Scholes application, which
generates the largest kernel and has the best operation to
calculation ratio, memory bandwidth still plays a role as a
limiting factor.

The SOR application is the most memory bound and the
least compute intensive of the four applications. Still, it is
clearly beneficial to utilize the GPU through Bohrium (figure
5). For the largest problem size, it achieves a speedups of 109
and 94 times for the single precision versions and 72 and 61
times for the double precision versions. Even for the smallest
problem size, it achieves a significant speedup. The drop-off in
performance for the ATI GPU for single precision from 8k ×
8k to 16k × 16k is something that needs further investigation.

The shallow water application works on several distinct
arrays and has more complex computational kernels, compared
to the SOR application. The more complex kernel is why
we are able to get better performance. Again we observe
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Fig. 6. Relative speedup of the Shallow water application running on the
workstation
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Fig. 7. Relative speedup of the N-body application running on the workstation

the same drop off in performance for the largest problem
size – though this time on the NVIDIA GPU (see figure 6).
The more curious observation one can make from figure 6 is
that the ATI GPU performs much poorer than NVIDIA. ATI
has better specifications in both memory bandwidth and peak
performance. We will have to investigate whether the code we
generate favors NVIDIA GPUs, and if we can do something
to remedy this.

The straight forward algorithm used in the N-body simula-
tions computes distances of all pairs, expanding the N-body
data to O(n2) data points. While calculating the forces, the
data is reduced back to the original O(n) size. Due to the
simple algorithm used in the GPU-backend, the reduction will
force a kernel boundary, resulting in the expanded data being
written back to global memory, before being read again by
another reduction kernel – thereby being reduced. The large
space requirements, due to the all pairs expansion, also puts an

unfortunate limitation on the problem sizes NumPy is able to
run. Only the two largest problem sizes are theoretically able
to use all the core on the two GPUs, which leaves little room
for latency hiding. Still, the Bohrium GPU backend is able to
achieve up to 40–100 times speedup as figure 7 illustrate.

It is clear from figure 4–7 that the bigger the problem size,
the better suited it is for execution on the GPU. This is no
surprise since a bigger problem, will instantiate more threads,
better utilizing the many cores of the GPUs, and at the same
time enabling better latency hiding for the memory fetches.
It is also expected, that there is a certain initialization cost
for calling an external library, generating and decoding the
bytecode, generation kernels and source code and invoking
the GPU kernels. All of the experiments above have been run
for a small, but sufficient number of iterations that the initial
costs are amortized. To illustrate that the initialization costs
are not excessively large, all four benchmark applications were
run for just a single iteration. The Black-Scholes application
still shows a speedup of 10–500 times dependent on the
problem size for a single iteration. The SOR and Shallow
water applications show speedup for all, but the two smallest
problem sizes (up to 30 times). Finally, the N-body application
only shows speedup for the two largest problem sizes with a
single iteration – keeping in mind that it is only these problem
sizes that theoretically are able to utilize all cores. All the
experiments that do not show a speedup for a single iteration
has a total execution time of less than 0.4 seconds.

VIII. CONCLUSION

We have shown how Bohrium can be used as an easy way of
creating parallel programs without much fuzz. This is mainly
due to its tight collaboration with various array-programming
libraries.

Bohrium gets its interoperability from being component
based. These components are interchangeable and thus provide
freedom of use for the user. It is easy to change the code from
running on CPU to run on GPU instead, by just changing the
backend component.

Dedicated hardware for running Bohrium, the BPU, is being
investigated. With this we hope to achieve a better flops-per-
watt ratio than conventional hardware. This allows the user
of Bohrium to run their e.g. NumPy programs on dedicated
hardware, without knowing about how to actually program for
this hardware.

After code-generation Bohrium does various bytecode op-
timizations as well as array bytecode fusion. These opti-
mizations and fusions allow for Bohrium to run faster and
sometimes even faster than hand coded OpenMP code. Even
though Bohrium is not build for speed, it can be fast. In case
of the Black Scholes benchmark, Bohrium is actually 67.3
times faster than a serial C implementation, while a hand-
tuned C++/OpenMP implementation only gives a speedup of
29.1 for 32 threads.

Bohrium is thus an easy way to parallelize, and speedup,
your array programming code.
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