
Embedding Fork-Join Parallelism into LLVM IR

William S. Moses Tao B. Schardl Charles E. Leiserson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{wmoses, neboat, cel}@mit.edu

This paper explores how fork-join parallelism, as supported by
dynamic multithreading concurrency platforms such as Cilk and
OpenMP, can be embedded into LLVM IR. Mainstream compilers,
such as LLVM, typically treat parallel linguistic constructs as syn-
tactic sugar for function calls into a parallel runtime. These calls
prevent the compiler from performing optimizations across parallel
control flow. As a result, the serial equivalant for many programs
is faster than running in parallel because the compiler is unable to
perform many of its usual optimizations. For example in Figure 1
the compiler is unable to do loop-invariant code motion.

01 __attribute__((const)) double norm(const double *A, int n);
02

03 void normalize(double *restrict out,
04 const double *restrict in, int n) {
05 cilk_for(int i = 0; i < n; ++i)
06 out[i] = in[i] / norm(in, n);
07 }

Figure 1. Example Cilk function that neither GCC nor the Cilk
Plus/LLVM compiler optimize effectively. The cilk_for loop on
lines 5–6 allows each iteration of the loop to execute in parallel.
The norm function computes the norm of a vector in Θ(n) time. The
call to norm on line 6 can be safely moved outside of the loop, but
neither GCC nor Cilk Plus/LLVM will perform this code motion.

Remedying this situation, however, is generally thought to re-
quire extensively reworking compiler analyses and code transfor-
mations to handle parallel semantics. This is generally difficult be-
cause some serial optimizations such as strength reduction cannot
be applied to parallel code in general.

This paper introduces Tapir, a compiler IR that represents log-
ically parallel tasks asymmetrically in the program’s control flow
graph. Tapir’s allows a compiler to optimize across parallel control
flow with only minor changes to its analyses and code transforma-
tions. Tapir enables a variety of compiler optimizations, including
traditional compiler optimizations such as loop-invariant-code mo-
tion, loop unrolling, scalar replacement of aggregates, as well as
new parallel optimizations.

As a result of both difficulty of analysis and dependence on
particular runtime systems, most mainstream compilers have not
performed parallelization as an optimization beyond vectorization.
Tapir resolves both of the issues for compilers by making it pos-
sible to easily perform parallel analysis in a runtime-independent
way. Some examples of parallel-specific optimizations which Tapir
easily enables include loop-parallelization and parallel tail recur-
sion elimination, among others.

Tapir introduces three new instructions to LLVM’s IR in order to
represent parallel tasks. These instructions are detach, reattach
and sync. The syntax for these instructions is shown in Figure 2.
At a high-level, detach, reattach, and sync serve to separate logi-

cally parallel tasks. This is done by using a structure similar to a
branch and code in Tapir is thus able to easily interact with existing
optimizations.

08 detach label <detached>, label <continuation>
09 reattach label <continuation>
10 sync

Figure 2. LLVM IR syntax for the detach, reattach, and
sync instructions. The label keyword indicates that detach and
reattach take basic block labels as arguments.

To prototype Tapir in LLVM, we added or modified approxi-
mately 1700 lines of LLVM’s approximately 3 million line code-
base. These changes alone were sufficient to allow Tapir to enable
most serial optimization passes. Tapir was tested both on small mi-
crobenchmarks as well as larger applications. Results for the larger
applications are shown in Figure 3.

Figure 3. Large application benchmarks for Tapir. Tests are run
against three compilers – CilkPlus/LLVM which directly translates
to runtime calls before optimizing, GCC which is able to perform
some optimization at the front-end, and Tapir. Benchmarks were
run using one thread on Amazon c4.8xlarge instances.

The results of these benchmarks are promising — providing
reasonable performance improvements on large-scale applications
where the compiler simply converted to runtime calls. These results
were then compared with the latest version of GCC — which
through immense amounts of code-duplication and front-end hacks
is able to perform similarly for some optimizations. Code using
Tapir, however, is naturally able to perform all such optimizations
without large amounts of explicit optimizations on the front-end.
Moreover, Tapir is much more extensible and able to work with
any new optimization passes as well as allow for parallel-specific
optimization passes.


