
Compiler Optimization for Parallel
Recursive Traversals of K-d Trees

Samyam Rajbhandari1 Jinsung Kim1

Sriram Krishnamoorthy2 Louis-Noël Pouchet1 Fabrice Rastello3

Robert J. Harrison4 P. Sadayappan1

1 Ohio State University, USA 2 Pacific Northwest National Laboratory, USA 3 INRIA, France 4 Stony Brook
University, USA

Abstract
There has been considerable work towards implementing loop transformations for enhancing data locality, including loop
fusion, permutation, tiling, etc., and many loop transformations are implemented in the optimization passes of production
compilers such as GNU gcc, IBM xlc, Intel icc, Nvidia nvcc etc. However, there has been relatively little prior research
on compiler-directed data locality optimization for recursive programs. Our work is motivated by the need for compiler
optimization to enhance the performance of the production scientific application framework MADNESS (Multiresolution
Adaptive Numerical Environment for Scientific Simulation), an environment for the solution of integral and differential
equations in many dimensions.

A MADNESS user writes a program using high-level operators on functions over space (i.e., these functions are the
“variables” of the MADNESS program). Examples of MADNESS operators on functions are addition, multiplication,
convolution, and differentiation. Functions over space (the MADNESS programs variables) are internally represented
using k-d trees, refined to a tree depth based on the desired numerical precision for the computation. The implementation
of MADNESS operators has a recursive specification over the structure of the k-d tree representation of the produced
result variable, suitably traversing the k-d tree representations of the input operand variables. The k-d trees representing
MADNESS variables are typically much larger than cache. Therefore, the execution of each MADNESS operator generally
requires a considerable amount of data movement across nodes and within the memory/cache hierarchy of nodes on
a distributed-memory cluster. In the current MADNESS implementation, the recursive functions corresponding to the
operators are executed in a nested fork-join fashion, incurring significant overhead. We develop domain-specific compiler
support to optimize parallel execution of MADNESS programs.

Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers.
But optimizing compilers for imperative languages currently cannot exploit fusion opportunities across a set of recursive
tree traversal computations with producer-consumer relationships. We develop a compile-time approach to dependence
characterization and program transformation to enable fusion across recursively specified traversals over k-d trees. We
present a source-to-source code transformation framework to automatically generate fused composite recursive operators
from an input program containing a sequence of primitive recursive operators. We use the new compiler framework to
implement fused operators in MADNESS, demonstrating significant performance improvement.


