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Abstract. Diderot is a parallel domain-specific language for analysis and visu-
alization of multidimensional scientific images, such as those produced by CT
and MRI scanners [8, 18]. Many visualization methods seek to measure prop-
erties from continuous tensor fields reconstructed from the discrete image data
and not just the data itself; these algorithms require high level tensor mathemat-
ics. A novel aspect of Diderot’s design is that it supports a form of higher-order
programming where tensor fields (i.e., functions from 3D points to tensor val-
ues) are first-class values. These tensor fields represent the underlying physical
objects that were scanned by the imaging device, which allows algorithms to
be programmed against the geometry of the objects, rather than against a dis-
crete sampling of the object. We have recently generalized this model to provide
lifted versions of the standard linear algebra operations (e.g., tensor addition, dot
products, norms, determinants, etc.) on tensor fields. While such lifted field op-
erations are central to the definition and computation of many scientific visual-
ization algorithms, to date they have required extensive manual derivations and
laborious implementation. Our new implementation of Diderot allows direct use
of the higher-order field operations, which leads to a very-high-level mathemati-
cal programming model where mathematical reasoning is directly translated into
Diderot code.
The implementation challenge is how to bridge the wide semantic gap between
the higher-order operations on tensor fields and their implementation as efficient
executable code. This paper describes a new intermediate representation, called
EIN, that we have developed for the Diderot compiler, which enables the imple-
mentation of its higher-order programming model. This IR provides a concise
and manageable representation of the complex iterative computations that lie at
the heart of a Diderot program. We describe the design of our IR, how it fits
within the Diderot compiler’s pipeline, and some of the technical challenges in
efficiently managing the translation from tensor fields to low-level executable
code. We demonstrate that EIN can compile more programs than previously pos-
sible. Also, it compiles faster and offers faster executables.

1 Introduction

Diderot is a parallel domain-specific language for writing image-analysis algorithms
that are defined using the concepts of tensor calculus and linear algebra. The design of
Diderot couples a simple portable parallelism model with a very-high-level mathemat-
ical programming notation [8, 18]. We use Unicode to support mathematical notation



with the goal that a programmer should be able to directly transfer her mathematical
reasoning from the whiteboard to code. For example, a CT scan can be viewed as a 3D
scalar tensor field F (i.e., a continuous map from R3 to scalar values), where the value
F(x) evaluated at point x represents the opacity to X-rays of the scanned object at that
point. Using the concepts of tensor calculus, we can compute geometric properties of
the scanned object. For example, if the point x lies on an isosurface in F, such as the
boundary between hard and soft materials, we can write −∇F(x)/|∇F(x)| to de-
note the surface normal vector at that point. The analysis of fields of vector and second-
order tensor values also often involve quantities that may be expressed compactly with
the notation of vector or tensor calculus. While the Diderot notation is quite concise,
the underlying implementation involves tens to hundreds of lines of C or OpenCL code
to compute. One of the main challenges of the Diderot implementation is bridging this
semantic gap by effectively translating high-level mathematical notation of tensor cal-
culus into efficient low-level code.

The Diderot compiler uses a static single assignment (SSA) representation for pro-
grams. We have extended the assignment form with the application of EIN operators on
the right-hand side:

t = λparams〈e〉α(args)

An EIN operator λparams〈e〉α can be viewed as a function that produces a tensor (or
tensor field) when applied to the arguments args . EIN 1 operators replace and generalize
the fixed set of primitive operations that we previously used in our compiler. The EIN
IR makes it easy to define operations, which makes extending the language easier.

Once a surface language operation is mapped to an EIN operator, the compiler can
handle the computations generically, by systematically composing EIN operators, nor-
malizing their bodies, and optimizing them. The EIN representation enables index-base
optimizations and simplifications. The rewrite rules that the compiler uses to optimize
and compile the EIN IR are simple, but their combined use produces interesting emer-
gent behavior, where the compiler “discovers” mathematical identities during optimiza-
tion. Unfortunately, these transformations can result in a combinatorial explosion in the
size of the IR. To address these concerns we have developed a number of compilation
techniques that keep the size of the IR in check without sacrificing the expressiveness
of the representation.

Adding the EIN representation to the Diderot compiler has greatly increased the
expressiveness of the language, which, in turn, enables a richer set of algorithms to be
directly programmed in Diderot. We have evaluated this new implementation by com-
paring both the execution time of programs that use the new higher-order features with
hand-derived first-order versions. These experiments demonstrate that that the addi-
tional layer of abstraction does not come at an execution cost. In fact, the new compiler
often produces faster executables.

The remainder of the paper is organized as follows. We discuss related work in Sec-
tion 2. Section 3 provides background description of the Diderot language, and the basic
mechanisms of implementing Diderot’s mathematical features. Section 4 provides mo-
tivating examples. We then introduce the EIN intermediate representation in Section 5

1 Our representation was inspired by Einstein Index Notation, which is a concise written notation
for tensor calculus invented by Albert Einstein [15].



and describe how exemplar tensor operations are represented. In Section 6 we detail
the compilation techniques organized around the IR. We report results in Section 7, and
conclude in Section 8.

2 Related Work

Domain-specific languages can offer several benefits. The syntax and type system can
be designed to meet the practice and expectation of domain experts. The compiler
can do the right transformations at the right level of abstraction and leverage common
domain-specific traits. The programming model can abstract away from hardware and
operating system decisions. By doing so, the end-user can writing code that looks like
the domain and let the system focus on generating high-performance code.

There are a variety of domain-specific languages and frameworks that provide sim-
ilar features that supported in Diderot. Shadie is a DSL for direct-volume rendering
applications that is targeted at GPUs [17]. It is restricted to volume renderings and
built-in functions. Scout is a DSL that extends the data-parallel programming model
with shapes — regions of voxels in the image data — to accelerate visualization tasks
on GPUs [20]. It is designed for algorithms that do computations over discrete voxels,
such as stencil algorithms, instead of a continuous tensor field. Delite is a framework
for implementing embedded parallel DSLs on heterogeneous processors [5, 7]. The host
language for Delite is Scala. Vivaldi is a DSL that supports parallel volume rendering
applications on heterogeneous systems [9]. It has a fixed volume rendering vocabulary
and does not have the flexible notation that Diderot provides. ViSlang is a system to
develop and integrate DSLs for visualization [22].

There are various domain-specific languages that can provide a link between the
mathematical algorithms and programming. The tensor contraction engine (TCE) cre-
ated by Hartono, Albert et. al represents quantum chemistry in a high-level mathematica
style language [11] . Spiral, a DSL created for digital signal processing [21]. Its design
encapsulates significant mathematical knowledge of algorithms used in digital signal
processing. Diderot supports a high level of expressiveness between tensors and ten-
sor fields and field differentiation. COFFEE is a domain-specific compiler for local
assembly kernels, an operation key to finding numerical solutions to partial differential
equations [19]. The Unified Form Language is a domain-specific language for repre-
senting weak formulations of partial differential equations [2]. At its core we both aim
to support tensor algebra, high-level expressions with domain-drive abstraction, and
offer differentiation (automated vs. symbolic).

EIN is inspired by Einstein Index Notation, which is a concise written notation for
tensor calculus invented by Albert Einstein [15]. Einstein index notation, sometimes
called the summation convention, can be used to represent a wide array of physical
quantities and algorithms in scientific computing [1, 3, 10, 14, 23, 24]. Various designers
study the ambiguities and limitations of the notation to extend its uses on paper and
develop grammar and semantics for implementation. A part of the ambiguity in index
notation is related to the implicit summation. EIN notation uses an explicit summation
symbol leading to more book-keeping but allowing us to express explicit boundaries for
diverse operations.



3 Background

In this section, we present an overview of the computational core of the Diderot lan-
guage and its compiler. The power of Diderot’s programming model comes from the
ability to create one field from another. A key aspect of implementing tensor fields is
the mechanism of reconstruction from discrete data, which we also discuss. A previ-
ous paper [8] described an earlier version of this language, which had the same base
programming model, but with much less expressive power. Results in a more recent
paper [18] were made using EIN, and this manuscript is the first detailed exposition of
its implementation.

3.1 The Diderot Language

The computational core of Diderot is organized around two families of types: tensors
and tensor fields. Tensors include scalars (0th-order), vectors (1st-order), and matri-
ces (2nd-order), and are the concrete values that the system computes with. A value
with type “tensor[d1 . . . dn]” is an nth-order tensor in Rd1 × · · · × Rdn ; we refer
to d1 . . . dn as the shape of the tensor. The exclusive internal use of the orthonormal
elementary basis for representing tensors means that covariant and contravariant in-
dices can be treated equally. Diderot supports the standard linear algebra operations on
tensors, such as addition and subtraction, inner, outer, and colon products, trace, Eigen-
vectors and values, etc. Diderot’s expression syntax is designed to mimic mathematical
notation, while still retaining the flavor of a programming notation. For example, one
writes “(u ⊗ v) / |u ⊗ v|” for the normalized outer product of two tensors.

In textbooks and research papers about visualization and analysis, methods are often
mathematically defined in terms of fields, while implementation details are presented
separately in terms of the data representation [16]. A novel feature of Diderot is that
it supports programming directly with fields. In visualization algorithms, tensor fields
serve as a mathematical abstraction of the data sets produced by various digital imag-
ing technologies (e.g., Diffusion MRI). These imaging technologies sample physical
objects at discrete points producing a multidimensional grid of sample values called
voxels. We use convolution (~) with kernels to reconstruct a continuous representation
from the samples, and we model this reconstruction in the language as a continuous ten-
sor field. A value with type “field#k(d)[d1 . . . dn]” is a Ck continuous function,
which means we can apply up to k levels of differentiation, in Rd → Rd1 × · · · ×Rdn .
As mentioned above, tensor fields can be defined by convolving a reconstruction kernel
with an image. For example, the following code defines a 3D scalar field:
field#2(3)[] F = bspln3 ~ image("img1.nrrd");

The field F is reconstructed using the bspln3 kernel from the image-data file
img1.nrrd 2. F has C2 continuity, which is determined by the kernel.

Fields are functions and, as such, we can apply them to points in their domain,
which we call probing the field. For example, if p is a point in R3 (i.e., it has type

2 We use the Teem library’s Nrrd file format to represent multidimensional data sets (both input
and output) [25].



tensor[3]), then F(p) will evaluate to a scalar (since F is a scalar field). Likewise,
if q is a point in R2, then R(q) will evaluate to a three-element vector.

The real power of programming with fields comes from Diderot’s support for higher-
order operators, which allows fields to be defined in terms of combinations of other
fields. Just as in mathematics, it is normal to write “A+B” to denote λ p(A(p)+B(p)),
Diderot lifts most tensor operations to work on fields, so if A and B are fields of the same
type field#k(d)[σ], then A+B denotes the field that is their lifted sum. In addition
to lifted operators, Diderot also supports the standard differentiation operators on fields
(∇, ∇·, ∇⊗, and ∇×). By differentiating fields we enable scientists to extract specific
features from the images. For instance, we can use the Hessian (∇ ⊗ ∇) of the field
F to compute curvature of surfaces in the image-data file img1.nrrd. While the ear-
lier version of Diderot supported tensors and fields, it had much less support for lifted
operators and only supported∇,∇⊗, and a restricted form of∇×.

3.2 The Diderot Compiler

The Diderot compiler is organized into three main phases: the front-end, optimization
and lowering, and code generation. This paper is primarily concerned with the middle
of these phases (optimization and lowering), but we include a brief description of the
other phases too. The front-end consists of parsing, type checking, and simplification.
Although Diderot is a monomorphic language, most of its operators have instances at
multiple types. For example, addition works on integers, tensors of all shapes, fields,
and combinations of fields and tensors. The typechecker uses a mix of ad hoc overload-
ing and polymorphism to handle these operators. The output of typechecking is a typed
AST where operators are instantiated at specific monotypes. The typed AST is then
converted into a simplified representation, where user-defined functions are inlined and
named temporaries are introduced for intermediate values.

The optimization and lowering occurs over a series of three intermediate representa-
tions (IRs) based on Static Single Assignment (SSA) form [12]. We use parameterized
modules in the implementation to define a common control-flow graph (CFG) repre-
sentation parameterized over the IR types and operators. The three IRs are as follows:

High-IR is essentially a single-assignment version of the source language that supports
the surface language types and operations. Specifically, fields and operations on
fields are represented at this level.

Mid-IR supports linear-algebra operations on tensors and reconstruction-kernel evalu-
ation. At this stage, higher-order types (i.e., fields) and operations (e.g., probes and
differentiation) have been translated into concrete tensor operations.

Low-IR supports basic operations on hardware-vectors (e.g., Intel’s SSE registers),
scalars, and memory objects.

The optimization and lowering phase uses several different kinds of transformations in
the process of converting High-IR to Low-IR. These include

– Optimization transformations at each level. We use both traditional compiler op-
timizations, such as dead-variable elimination and value numbers, and domain-
specific rewriting to optimize the code.



– Lowering transformations that expand higher-level operations into equivalent se-
quences of lower-level operations.

– Normalization, which is a necessary transformation on High-IR to enable lowering
of field operations. We discuss normalization in more detail below.

Code generation involves mapping the Low-IR CFG to a block-structured IR with ex-
pression trees. We then generate either C code with GCC vector extensions or OpenCL
code from this IR. Then the host compiler to produce either a library or an executable.

3.3 Implementing Tensor Fields

Operations on fields can be classified as either declarative, which are operations that
define field values, or computational, which are operations that query a field to extract a
concrete value.3 Translating computational field operations into executable code is one
of the central challenges of the Diderot compiler. In this section, we given an informal
description of the basic techniques used to implement this translation.

In the base case, a scalar field F is defined as the convolution V ~H of an image
V with a reconstruction kernel H , where H is a separable kernel function that can be
expressed over multiple arguments (e.g., H(x, y) = h(x)h(y) in 2D). Probing the field
F at a point p involves mapping p to a region of V and then computing a weighted sum
of the voxel values in the region (the weights are computed using the kernel) [8]. Let us
assume that F is a 2D field; then F (p) can be computed as

(V ~H)(p) = Σs
i=1−sΣ

s
j=1−s (V [n0 + i,n1 + j]h(f0 − i)h(f1 − j))

where the support of the kernel H is 2s, x is p mapped to V ’s coordinate system
(image space), n = bxc, and f = x− n.

Diderot, however, allows fields to be defined by complex expressions involving
lifted tensor operations and differentiation operators. In order to compile probes of arbi-
trary fields, we must perform a normalization of the field expressions before lowering.
The basic strategy of normalization is to push differentiation down to the leaves where
it can be represented using the derivatives of the kernel functions, and to push probes
down to the convolutions. For example, an expression (F + G)(p) can be rewritten as
F (p) + G(p), which pushes the probe down the expression tree. Effectively, we have
lowered a higher order expression (F +G) to a first-order sum of tensors.

The more interesting example is when we probe a field expression involving higher-
order operations, such as in the expression ∇F (p). We can normalize this expression
using direct-style operators as follows:

∇F (p) =⇒ ∇((V ~H)(p)) =⇒ (V ~ (∇H))(p)

We record multiple levels of kernel differentiation by adding a superscript to∇:
∇(V ~∇iH) =⇒ V ~∇i+1H (1)

Because kernels are separable, their differentiation is straightforward:

∇H(x, y) =

[
∂
∂x

∂
∂y

]
H(x, y) =

[
∂
∂x
H(x, y)

∂
∂y
H(x, y)

]
=

[
∂
∂x

(h(x)h(y))

∂
∂y

(h(x)h(y))

]
=

[
(h′(x)h(y))

(h(x)h′(y))

]
3 We describe probing a field to extract a value at a point. The other computational operation is

testing if a point lies in the domain of a field, which produces a boolean result.



The normalization process also needs to deal with the combination of probes and
differentiation with the lifted operations. Our earlier implementation used direct-style
tensor and field operators in the High-IR with specific rewrite rules to handle the various
combinations of operations (e.g.,∇(e1 + e2) =⇒ ∇e1 +∇e2). This approach suffered
from a combinatorial blowup in the number of rules, which made it difficult to add new
lifted operators. This paper describes a different approach to representing tensor and
tensor field operations in the High and Mid IRs, which has allowed us to greatly enrich
the expressiveness of the language.

4 Motivation

Our initial implementation of Diderot used a direct representation of tensor operations
(i.e., tensor operations, such as ∇, were primitive operators) in its intermediate repre-
sentation (IR) [8]. While sufficient to prototype the design ideals of Diderot, this first
version of the Diderot compiler was suffered from several limitations and unable to il-
lustrate a large range of programs.This section examines the design advantage of EIN
over the existing IR and provides motivating examples.

4.1 The Case for a New IR

Direct-Style The first design of Diderot used direct-style notation, OP . In direct-
style we treat operators as opaque operations, that are later reduced to lower level prim-
itives. As an example, the inner product of a two 2-d vectors

u • v = (u[0] ∗ v[0]) + (u[1] ∗ v[1]) (2)

is represented in direct-style as OP InnerP VecVec (u,v). Direct-style notation gives a
compact representation, but expanding that operation into scalar arithmetic creates a
size issue. EIN aims to be as compact as direct-style notation while revealing internal
details to translate and optimize a broader range of operators.

Expressive IR The direct-style compiler uses tensor-shape specific operators to ex-
press the inner product (2) between two tensors (e.g., OP InnerP VecMat(u,m),
OP InnerP MatMat(m,m), . . . ). In order to lift that operation to the field level (e.g.,
F · G) we would have to define a similar set of field-shape specific operators. Each
of these new operations adds additional complexity to the compiler’s transformations
since each operator computed on a field would need to be translated and optimized.

Index-Dependent Operators Direct-style operators are index-free, but there are
certain operations, such as the curl of a vector field, whose semantics depends on the
indices of components. To see the problem consider a vector field F and let Fi indicate
the ith axis of F . Differentiating the 3-d curl of F (∇⊗(∇×F)) illustrates the need to
refer to component indices. Mathematically, this expression is represented as:

∂2

∂x∂yF2 − ∂2

∂x∂zF1,
∂2

∂y∂yF2 − ∂2

∂y∂zF1,
∂2

∂z∂yF2 − ∂2

∂z∂zF1

∂2

∂x∂zF0 − ∂2

∂x∂xF2,
∂2

∂y∂zF0 − ∂2

∂y∂xF2,
∂2

∂z∂zF0 − ∂2

∂z∂xF2

∂2

∂x∂xF1 − ∂2

∂x∂yF0,
∂2

∂y∂xF1 − ∂2

∂y∂yF0,
∂2

∂z∂xF1 − ∂2

∂z∂yF0

 (3)



As can be seen from this matrix, the terms refer to components of the field and par-
tial differentiation operators, they are index-dependent. Since direct-style operators are
opaque with respect to the component indices, they cannot express these sorts of oper-
ations.

Rewriting The direct-style approach for applying the differentiation operator is ad-
equate for the basic differentiation of scalar and tensor field (∇,∇⊗) but it does not eas-
ily generalize to the full range of higher-order operators that we would like to support.
For instance, the divergence can not be supported with the same technique described in
the previous equation (1). i.e.∇ · F −→ ∇ · (V ~H) 6= V ~H1

4.2 Visualization and Image-Analysis Programs

While the direct-style version of the compiler provides an expressive language for im-
age analysis and visualization, it is lacking when trying to develop algorithms that rely
heavily upon higher-order operations. In the three examples of this section, EIN greatly
simplifies the expression of the quantity of interest, so that visualization and analysis
algorithms can refer to it and its spatial derivatives in a mathematically idiomatic way.
These example were also shown in [18], but without an explanation of the IR imple-
mentation.

Vector fields arise in the analysis of fluid flow; properties of the derivatives of the
vector field characterize important features (like vortices) in the flow. The curl ∇× V ,
for example, indicates the axis direction and magnitude of local rotation. One definition
of vortices identifies them with places where the flow direction V

|V| aligns with the curl
direction ∇×V

|∇×V| [13]. Normalized helicity measures the angle between these directions:

field#3(3)[] H = (V/|V|) • (∇×V/|∇×V|);
in terms of the vector field#4(3)[3] V

Material properties like diffusivity and conductivity vary locally not just in magni-
tude and orientation but also in directional sensitivity, so they are modeled with second-
order tensor fields. Visualizing the structure of tensor fields typically depends on mea-
suring various tensor invariants, such as anisotropy: the magnitude of directional depen-
dence. Neuroscientists study the architecture of human brain white matter with diffu-
sion tensor fields computed from MRI [4]. A popular measure of diffusion anisotropy,
“fractional anisotropy” can be directly expressed in Diderot as:
field#4(3)[3,3] E = T - trace(T)*identity[T]/3;
field#4(3)[] A = sqrt(3.0/2.0)*|E|/|T|,
which measures the magnitude of the purely anisotropic deviatoric tensor relative to
the tensor T itself.

Subsequent visualization or analysis of the fields so defined will typically require
differentiation, such as the first derivatives needed for shading renderings of isocon-
tours, or the second derivatives needed for extracting ridge and valley features. Gener-
ating expressions for ∇ H, and ∇ A by hand is cumbersome and error-prone, whereas
EIN allows Diderot to easily handles these, and even second derivatives like∇⊗∇ A.

4.3 Illustrative Example
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Fig. 1. Volume rendering of isocontours (left)
and Canny edges (right) from a CT scan of Ce-
bus apella (capuchin) head.

Lifted operators are important for meet-
ing our goal of supporting direct rep-
resentation of mathematical concepts in
Diderot source code. For example, con-
sider trying to visualize the bone surface
in a CT scan. The simple, first-order, ap-
proach is to render an isosurface. The
three images on the left of Figure 1 show
how unsatisfactory this is, due to wide
variations in bone density: no isosurface
correctly shows the skull. A better way to
visualize the bone surface is to use a 3D version of Canny edge detection [6]. Diderot al-
lows this math to be used directly in a field definition: field#2(3)[] F =∇(|∇ V|)·∇ V

|∇V | ;
A surface rendering of where F(x) is zero is shown on the right of Figure 2. The entire
bone surface is visible, color-mapped by the underlying data value. Particularly signifi-
cant is the surface shading computed in terms of ∇F , which requires a third derivative
of V. Using the product and chain rules of differentiation, the compiler generated all the
code needed to reconstruct and manipulate∇⊗∇⊗∇ V, a third-order tensor.

5 EIN

To address this limitation of direct-style tensor operations, we have developed a new
intermediate representation, that we call EIN, which is much more compact than the
full expansion of tensor expressions (such as the matrix in Equation 3), while permitting
index-specific operations. This new representation is embedded in the same SSA-based
representation as the direct-style operators, except that we now have EIN assignment
nodes of the form

t = λparams〈e〉α(args) (4)
where

– t is a tensor or field variable being assigned
– λparams〈e〉α is an operator defined in the EIN IR, with formal parameters params ,
α is the shape of tensor t, or range of field t, and body e.

– args are the argument variables to the EIN operator
In an EIN operator, the bound indices range over the shape of the result; i.e., a scalar
result has no indices, a vector result has one bound index, a matrix result has two, and
so on. One way to think of EIN expressions is that they are a compact way to represent
the loop nest that computes their result (although in our compiler we usually unroll their
implementation). For example, the expression trace(u⊗v) is represented in High-IR as

t1 = λU, V 〈UiVj〉ij(u,v) t2 = λT 〈
∑
i Tii〉(t1) (5)

where the ranges on the indices are inferred from the types. In this example, it will
automatically reduce the expression to

t2 −→ λ(U, V )〈
∑
i UiVi〉(u,v)

thus discovering the identity trace(u⊗ v) = u · v. Returning to the curl example, EIN
(Figure 2) gives a compact representation of the matrix (Equation 3).

t = λF
〈∑

kl Eikl
∂

∂xjk
Fl

〉
ij

(F)



5.1 EIN Notation

EIN operators provide a mathematically sound and compact representation for tensor
and field operations. This section introduces the notation used to represent the tensor
and field operations in the Diderot compiler that replaces the old direct-style IR. The
grammar of EIN operators is given in Figure 2 (we omit the full set of arithmetic oper-
ators for compactness).

e ::= Tα, Aα, Bα | Fα, Gα | vα(e) | hβ(e) Tensor, Field, Image, and Kernel
| δij | Eij , Eijk Kronecker deltas, Levi-Civita tensor
| ∂

∂α
� e, lift(e), sine(e), en,

√
e unary operators

| e1@e2, e− e, ee , e ∗ e binary operators
|

∑n2
α=n1

e, | Vα ~Hβ . . . other operators
µ = i, j, k variable | n ∈ N constant indices

α, β, γ = µ̄ sequence of indices
E = λx̄〈e〉α EIN Operator

Fig. 2. The syntax of EIN operators E and EIN expressions e in High-IR

A key aspect of the EIN IR is the tracking of indices. Indices can either be vari-
ables (denoted by i, j, and k), or constants (n ∈ N). We also use α, and β to denote
sequences of zero or more indices of either type. A variable index can either be bound
in a summation or as one of the indices that determine the shape of the EIN operator’s
result. EIN expressions include tensors (Tα), and fields (Fα); the latter two forms have
multi-index subscripts specify the individual component for higher-order shapes. The
Levi-Civita symbol (Eij ,Eijk) and Kronecker delta (δij) are used to permute and cancel
components based on their indices. Summations have the usual semantics (Σν̄e). There
are several forms that are special to fields. These include differentiation ( ∂∂α � e), prob-
ing (e1@e2), lifting a tensor to represent a constant field (lift(e)), and defining a field
as the convolution of an image and a kernel (Vα~Hβ). Math functions include cosine,
sine, arccosine, and arcsine. Lastly, we have the standard arithmetic operations, such as
addition and multiplication. In the remainder of this section, we illustrate the constructs
of EIN operator by example. Consider the expression

λx̄〈
∑
ν e〉i where 0 ≤ i < n and ν = [c ≤ j ≤ d]

which has two indices i, j. The bound index i ranges from 0 to n − 1 and gives the
expression its shape (i.e., a vector in Rn).4 The summation index j ranges from c to d.
Each component in the resulting vector (Equation 5.1) binds index i and evaluates e.

Permutation tensor and Kronecker delta The Eα and δi,j expressions are the per-
mutation (or Levi-Civita) tensor and Kronecker delta function.We use these to model
index-dependent tensor operations.

Fields and Tensors EIN expressions describe Fields Fα and Tensors Tα of arbitrary
shapes (similar to traditional index notation). A field and tensor expression is appended

4 By convention, we omit the range on bound indices, but they are present in the IR in our
compiler.



with a list of indices that refer to the size of the tensor or field. A scalar field is expressed
as F , a vector field is expressed as Fi, Tij is a matrix, and Tijk is a second-order tensor.

Probe and Lift The probe operator e1@e2 applies field e1 to the point e2 and lift(e)
lifts a tensor e in a field expression.

Convolution The convolution expression Vα1
~ Hα2 is the convolution operation

of an image field V , with the range α1 and a piecewise polynomial kernel H . Field
reconstruction is discussed in more detail in Section 5.4.

Differentiation The expression ∂
∂α �e denotes differentiation on field e. The concise

representation of differentiation allows us to express a wide variety of differentiation
operations including the gradient (∇), divergence (∇·), curl (∇×), Jacobian (∇⊗).

5.2 Generating EIN Expressions

The Diderot compiler generates High-IR, including the EIN operators, from an explic-
itly typed simplified AST representation. For many related operations, we can define a
generic (i.e., shape polymorphic) EIN operator that gets specialized based on its type.
A simple example is the tensor addition operator, which works on tensors of any shape.
We define a generic tensor addition operation that is parameterized over a multi-index
meta-variable α and using de Bruijn numbering:

Λαλ(A,B)〈Aα +Bα〉α (6)

We specialize the operator to a particular shape by replacing α with a multi-index that
ranges over the shape.

5.3 Lifted Tensor Operations

One benefit of the EIN IR is that it makes implementing lifted operators (i.e., tensor
operations lifted to work on fields) much easier. Consider the inner product operator •
lifted to work on fields. It has the generic definition (left-hand side)

λ(F,G)〈
∑
k FαkGkβ〉αβ −→ λ(F,G)〈

∑
k FkGki〉i

where α and β are specialized to handle different shapes. The inner product between
a vector field F and a matrix field G is realized (right-hand side) by instantiating α to
the empty multi-index and β to a single index. The result of this computation is a field
expression that can be probed, differentiated and used in a visualization algorithm. This
flexibility is simply not feasible in the direct style compiler (see Section 4).

5.4 Field Reconstruction

This section will illustrate field reconstruction with EIN and offer an example. During
the transition from High-IR to Mid-IR, higher order constructs get replaced by lower-
order constructs. Probed fields v~h(x) are replaced with terms to express computation
being done on the image separable kernels. Traditional index notation [15] does not
provide the notation needed to show the reconstruction of fields. The EIN expressions
vα(ē), val(i), and hψ̄(e) are introduced for this purpose.



Design The expression vα denotes an image field. The expression vα[ē] is an image
field indexed at a list of integer positions ē. The val(i) notation lifts an index variable to
a constant integer; e.g.,

∑n
i=0 val(i) = 0 + 1 + 2 + · · ·+ n. We use the notation hn to

refer to the nth derivative of univariate function h. In EIN expression hψ̄ the level and
type of differentiation is captured in the ψ̄, which is a list of pairs [(c, i1), . . . , (c, im)]
that are evaluated like Kronecker-deltas pairs (i.e., ψ = (c, i) = δc,i) and added together.

Implementation We build on the exposition in [8], reproduced here for conve-
nience, to explain the context and contribution of EIN. Let f be a 2-d vector field
field#0(2)[2] F = tent ~ img("i.nrrd"); vec2 out = F(p);

The output of probing vector field is evaluated as[∑s
ij:1−s v0[n0 + i,n1 + j]h(f0 − i)h(f1 − j)∑s
ij:1−s v1[n0 + i,n1 + j]h(f0 − i)h(f1 − j)

]
(7)

In High-IR this operation is represented as a single EIN operator

out = λ(V,H, T )〈Vi ~H(T )〉i(F, tent, p) where and 0 ≤ i ≤ 1 (8)

Position p is in world-space and is transformed to image-space position x using trans-
formation matrix M and translation matrix T.

R = M−1 x = λ(A,B,C)〈Σj(AijBj) + Ci〉i(R, p, T) n = bxc f = x− n

The transformation between basis were previously represented with direct-style oper-
ators that generated function calls. Now they can be represented with mix of simple
direct-style and EIN operators. The field (equation 8) is reconstructed in EIN notation
as

out −→ λ(v, h, n, f)〈e〉α(F, tent, n, f)

e =
∑s
jk=1−s vα[n0 + val(j),n1 + val(k)]h(f0 − val(j))h(f1 − val(k))

The specific axis for the fractional f and integer n position are represented with a con-
stant index. Variable indices are lifted to integer values as val(i) and val(j).

Differentiation The differentiation of a field is pushed down to the polynomial
kernels. Our general approach allows us to represent, reconstruct, and normalize ∇α
rather than it’s many variations. In EIN notation we express (1) as

∇iH(x, y) = hδ0i(x)hδ1i(y) (9)

6 Optimization and Transformations

This section offers a unique set of techniques organized around the EIN IR that makes
compilation possible. The previous section described the design of our IR to represent
operations between tensor and tensor fields. The translation from tensor field operators
to low-level executable code has brought technical challenges. A naive implementa-
tion of our transformations causes unacceptable space blowup. To address this we have
developed techniques around the IR to reduce and the size from lowering passes.

As discussed in the previous section, surface language operators are mapped to EIN
operators. From there we use substitution, a systematic way to apply EIN operators to



one another, followed by the rewriting system that normalizes EIN operators. After the
normalization process EIN expressions can be rather large and complicated. This can
make it difficult to efficiently generate code, take advantage of vector hardware, and
eliminate redundant expressions. To address these concerns we introduce techniques
Shift, Split, and Slice, and demonstrate it’s application. As a side effect, the rewriting
does let us discover algebraic identities. Figure 3 list some examples of identities.

6.1 Substitution

We describe the act of substitution by example, starting with tensors a and b with shape
γ, tensor s with shape α, operations t1 = a + b and t2 = s ⊗ t1. The terms are
expressed in High-IR as two EIN operators

t1 = λ(A,B)〈Aγ +Bγ〉γ(a,b) t2 = λ(S, T )〈SαTβ〉αβ(s,t1)

The High-IR optimization phase will combine these operators into one EIN operator.
The result is a single EIN operator to represent these two operations.

t2 −→ λ(S,A,B)〈Sα(Aβ +Bβ)〉αβ(s,a,b) where γ is instantiated with β

This process allows us to represent computations on fields with a single expressions,
which can then be normalized and treated generically by the rewriting system.

Rewrites Substitution
∇×∇ϕ =⇒ 0,∇ · (∇×F) =⇒ 0 Tr(a⊗b)=⇒ a·b
(a ×b )×c =⇒b (a ·c )−a (b ·c ) ∇⊗ (∇ϕ) =⇒ ∇⊗∇ϕ
(a ×b )×(c ×d) =⇒(a ·(c ×d )b)− (b ·(c ×d )a) Tr(∇⊗∇ϕ) =⇒ ∇2ϕ
(a ×b )·(c ×d) =⇒(a ·c) (b ·d)− (a ·d) (b ·c) (MT )T =⇒ M

Fig. 3. This table is a list of identities that can be found from term rewriting and the substitution
technique. The tensors and fields are written in surface language syntax where ϕ is a scalar field,
M is a second-order tensor field, F is a generic fields, and a,b,c,d are vectors

6.2 Normalization

Transformation rules serve to simplify expressions by normalizing field terms, applying
differentiation, and optimizing expressions.

Field Normalization includes pushing probes down to convolution and differenti-
ation down to kernels. By pushing the field expression past tensor operators and down
to the field term, the operators are computed on the tensor result of a probe rather than
the entire field.

(sFβ)(x) =⇒ s(Fβ(x)) sine(Fα)@x =⇒ sine(Fα@x)

The differentiation index is pushed down to the kernels in a convolution expression.
The direct style version of this rule (1) limited the type of differentiation that can be
supported, so instead EIN notation has the following rewrite

∂

∂xµ
� (Vα ~Hβ) =⇒ Vα ~Hβµ (10)



Differentiation is a necessary step to translate generic EIN expressions to into re-
alizable field terms. The rewrites follow the rules of tensor calculus. They include the
product rule, quotient rule, chain rule, power rule, and certain trigonometric identities.

∇ � (e1e) =⇒ e1(∇ � e) + e(∇ � e1) ∇ � e1

e2
=⇒ (∇ � e1)e2 − e1(∇ � e2)

e2
2

Index based optimizations are possible with EIN notation. Applying one of these
optimizations reduces on at least one index and effectively removes at least one sum-
mation loop from the operation. The differentiation indices could have two of the same
variable index as an epsilon

∇ij � (Eijke) =⇒ 0.0

This rewrite enables the compiler to find identities∇×∇ϕ =⇒ 0 and∇·∇×F =⇒ 0.
Two epsilons in an expression with a shared index can be rewritten to deltas [10].

EijkEilm =⇒ δjlδkm − δjmδkl (11)

A δij expression can be applied to tensors, fields, and the del operator.

δijTj =⇒ Ti δijFj =⇒ Fi ∇j � δije =⇒ ∇i � e (12)

6.3 Shift

The Shift method leverages EIN notation to effectively move terms embedded in a sum-
mation operation, much like moving invariant terms outside of a loop nest. The method
works by analyzing the index-dependencies in a generic EIN expression e and the outer
summation. Given Σkaj , expression aj is invariant to expression Σk because variable
index j 6∈ {k} and so the term is moved outside the summation expression. Consider
the following expression

e −→
∑
jk(ajbkcjdk) −→

∑
j(ajcj) ∗

∑
k(bkdk) (13)

Shift moves the invariant term, a loop, outside the inner loop. The next phase of compiler
splits this operator into smaller EIN operators. This makes it easier to find common
computations in the rest of the program and take advantage of vector hardware.

6.4 Split

The substitution process can create large complicated expressions that can be difficult
to compile. Diderot does value numbering on a global scale but it is insufficient to
compiling many of the more mature and complicated Diderot programs. EIN adds a
level of complexity to this process because common terms could be bound to different
variable index or embedded inside a complicated expressions i.e. eije1k− ∇keij

∇jk

∑
l ellei2

.
We have created a Splitting technique to Split any complicated EIN operators into a
series of simple small operators. As we split we use Hash consing to share values and
effectively find common subexpressions.

The Split operation lifts out subexpressions while maintaining information about
the indices involved. Given a operation,



t0 = λT 〈e1 ∗ es〉α(args),

if e1 is another operation(+− ∗...) then it lifted into a new operator t_1, and the term
e1 is replaced with Tβ in t0. We use HashCons to find if t_1 has been used before . If
so, we found a common subexpression and if not we bind the new EIN operator.

t1 = λT 〈e1〉β(args) t0 = λT 〈Tβ ∗ es〉α(t1,args)

In order to enable splitting we need to be able to impose a concept of shape β of any
EIN expression e1. Unlike tradition index notation, two repeat indices do not imply
summation. The shape extracted needs to reflect simple operations A+B.
e1 = Aijk +Bijk and β = i, j, k
the order that the indices appear Transpose(A⊗B),
e1 = AjBi and β = j, i
if the indices repeat in multiple terms modulate(A,B),
e1 = AijBij and β = i, j
and with summation operators A ⊗(F· C),
e1 = Ai(

∑
k FkCkj) and β = i, j.

6.5 Slice

In the next stage of the compiler, each field expression creates a vast number of lower-
level operators to index discrete data and evaluate polynomial kernels. Split finds iden-
tical field expressions, while Slice identifies field expressions that are not the same but
will create many of the same lower level operators. Some operations evaluates compo-
nents for field terms individually Fx, Fy , Fz . Each component is unique Fx 6= Fy , but
may be defined by the same source data and reconstruction can create many of the same
computations. Transforming these operations directly can create an IR that is too large
to compile. Consider the determinant of a second-order tensor field M
tensor[3,3] A = M(p); tensor[] G = det(M)(p);
transformed to EIN as

A = λ(F, T )〈Fij(T )〉ij(M,p)

G = λ(F, T )
〈∑

ijk EijkF0i(T )F1j(T )F2k(T )
〉
ij

(M,p)
(14)

A naive implementation applied field reconstruction (Section 5.4) on each field term
(Fij , F0i, F1i, F2i) and creates many of the same operations. EIN notation could be
used to identify these common computations and change the probe of a sliced field to a
tensor operator indexing the original field. For simplicity, we omit the steps for splitting
and express the result with some rewriting.

A = λ(F, T )〈Fij(T )〉ij(M,p) G −→ λ(T )
〈∑

ijk EijkT0iT1jT2k

〉
ij

(A) (15)

Field reconstruction is then only applied to one field term Fij instead of four. The differ-
ence can be more significant when considering more complication tensor computations
(∇⊗∇det(M)). This technique allows the compiler to transform a smaller represen-
tation into low-IR and prevent the blow-up the naive implementation of EIN caused.



7 Benchmarks

We want the Diderot programmer to be able to define a field with a series of lifted
operators on the surface language, and rely on the compiler to differentiate it a few
times. This level of expressiveness makes writing Diderot code easier, faster, and more
intuitive. An earlier paper [18] demonstrated the impact of this work by illustrating
visualization features otherwise not available. It is useful to evaluate the impact of this
approach on the compiler and the language. In this section, we present three sets of
benchmark results. The first set is an evaluation of implementing EIN over the original
direct-style compiler. The second set of numbers measures the effect of the techniques
described in Section 6. The third is an evaluation of the effect of using the higher-order
features of the language versus equivalent first-order implementations.

7.1 Experimental Framework

The benchmarks were run on an Apple iMac with a 2.7 GHz Intel core i5 processor,
8GB memory, and OS X Yosemite (10.10.5) operating system. Each benchmark was
run 10 times and we report the average time in seconds.

The benchmarks are presented in the figures in order of mathematical complexity.
Benchmarks “illust-vr”,“lic2d”,“mandelbrot”,“ridge3d”, and “vr-lite-cam” are small ex-
amples available in the original compiler [8]. The benchmarks ,“mode”, “canny”, and
,“moe” are used to create figures in [18], and are discussed in Section 4.2. “Mode” finds
lines of degeneracy in a stress tensor field revealed by volume rendering isosurface of
tensor mode; “Canny-edges” computes Canny Edges; and “Moe” volume renders iso-
contours found using Canny Edges (see Section 4.3). Programs with “-first” indicate
that derivations were done on paper so the program could be written with first-order
operators and could be executed on the original compiler.

The benchmarks “dec-crest”, “dec-grad”, “rsvr”, and“mode-rig’ were not featured
in previous work, because they were outside the scope of possibility and involved a
higher degree of tensor math. Programs “dec-crest” and “dec-grad” are approximations
to illustrate the crest lines on a dodecahedron. Programs “mode-rig” and “rsvr” are both
programs created to measure ridge lines. The micro-benchmarks “det-grad”,“det-hess”,
and “det-trig” compute a single property: The gradient, hessian, and various functions
computed on the determinant of a field. Their run times are negligible and are omitted.

7.2 The Effect of implementing EIN

Figure 4 compares the application of EIN with the original compiler. Many of the
benchmarks could not be expressed in the previous version of the language and are in-
dicated in the graph. The development of EIN has impacted the type and complexity of
programs that be implemented with Diderot. Figure 4 illustrates the measurements for
all the benchmarks with full or a restricted level of the optimizations mentioned in this
paper. The next section will take a closer look at the impact of individual techniques.
Here we can summarize that fully implementing the optimizations enables Diderot to
compile programs that otherwise can not compile, and can compile programs faster,
while also offering faster or comparable executables.
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Fig. 4. The “Original”version of the compiler does not use the EIN IR. “Restricted” is the more
naive implementation of EIN. “EIN” is the baseline with the EIN IR with full optimizations
applied.

7.3 The Effect of Compiler Settings
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Fig. 5. Compile and run time measurements when implementing Slice and Split on High-IR.
Doing no amount of splitting prevents most of these programs from compiling so instead we
measure its impact by limiting it, “Minimal Split”. EIN is the baseline with techniques Split and
Slice implemented.

As we have discussed previously, a naı̈ve application of our transformations causes
unacceptable space blowup. To address this problem we developed techniques to reduce
the size of the IR resulting from lowering passes. While their implementation might
allow more complicated Diderot programs to be created we want to evaluate the cost or
benefit it might impose on the programs that could already compile. In this section, we
evaluate the effectiveness of these techniques together and isolated at different levels of
abstraction.

Figures 5 and 6 measures the effectiveness of applying Split (Section 6.4) and Slice
(Section 6.5) on a high-IR EIN operator. Both techniques are effective at reducing the
size of the program by finding common subexpressions or reducing field terms (Figure
6). The slice technique is necessary to compile 3 of the 14 benchmarks. Split is the most
consequential technique (Figure 5). Restricting it stops 5 of the programs from being
able to compile. Neither technique assert a considerable cost to execution time.

We measured the effect of optimizations on a specific operation transformation at
a lower level of abstraction. Figure 7 measures the application of the optimizations
on reconstructed field terms.Applying optimizations Shift and Split together offers a
consistent speed-up on the execution time and compile time for all 13 benchmarks. 5



1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Size$of$rsvr$program
Restricted Minimal.Split No.Shift No.Slice EIN

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Size$of$dec9grad$program
Restricted Minimal.Split No.Shift EIN/No.Slice

1

10

100

1000

10000

1 2 3 4 5 6

lo
g$(
Si
ze
/1
00

0)

Phase

Size$of$rsvr$program
Restricted Minimal.Split No.Shift No.Slice EIN

1

10

100

1000

10000

1 2 3 4 5 6
lo
g$(
Si
ze
/1
00

0)
Phase

Size$of$dec9grad$program
Restricted Minimal.Split No.Shift EIN/No.Slice

Fig. 6. The graphs shows the size of the dec-grad (left) and rsvr program (right) program at
different phases in the compiler. “EIN” is the baseline with full optimizations.
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Fig. 7. Shift and Split on Mid-IR. Compile and run time measurements for implementing Shift
and Split techniques on reconstructed field terms. EIN baseline includes the application of Shift
and Split.

programs experienced at least a 20x compile time speed-up. 4 of the 7 benchmarks
offered at least a 1.3 speed up on execution time while the rest were comparable.
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Fig. 8. This figure compares hand-derived first-order programs with their high-order equivalent,
and first-order programs on the original compiler and with EIN.

7.4 First-Order versus Higer-Order

High-order versions of program are the preferred way to write Diderot code. Their first-
order counterparts require more lines of code and makes the user do derivations by
hand. The process can be time-consuming, tedious, and error-prone. Figure 8 reports
the compile and run time for first-order programs with their higher order counterparts.



The measurements are comparable for first and higher order programs ran with EIN.
Lastly, first-order implementations of the program compiled and ran faster on EIN than
on the original compiler.

8 Conclusion

We introduced and described the design of our IR, and some of the technical challenges
in efficiently managing the translation from tensor fields to low-level executable code.
The work enables a richer set of algorithms that can be created with Diderot. This
makes programming in Diderot easier, faster, and more intuitive. We intend to continue
developing the work to push the boundaries for what Diderot can do, while assuring the
user of the correctness of the work.
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