
Compilers for Heterogeneous Computing
Philip Ginsbach and Michael O’Boyle

School of Informatics, University of Edinburgh

Heterogeneous computing can be seen as a natural extension of parallel computing. Where 
traditional multi-threaded software runs on several identical processing cores, heterogeneous 
computing allows the processing cores to be structurally different.
This adds many additional challenges that have to be resolved for software to utilise heterogeneous 
hardware most efficiently. The segmentation of a single program into multiple threads remains an 
important task. Furthermore however, the scheduling of the tasks onto the different cores becomes a
much more sophisticated problem that can no longer be easily resolved by a run time scheduler. 
This is because the cores are suited for different kinds of workloads, may use different ISAs and 
distinct address spaces.
Efficiently distributing code in these complicated environments generally requires domain specific 
knowledge and as of today compilers play only a minor role in the decision making. There is 
however extensive library support for numeric computations on the most prevalent heterogeneous 
combination of CPU cores with GPGPU accelerators. These libraries cover many important 
domains such as linear algebra, Fourier analysis, computer vision, and machine learning.
Our research intends to transfer the domain specific knowledge that is captured in these well 
optimised library functions to the compiler. The underlying idea is that if compilers were able to 
automatically identify specific computational patterns such as linear algebra, stencil computations, 
reduction operations etc. they could automatically substitute them by library calls or other well 
optimised code snippets that use domain specific knowledge for efficient computations on 
heterogeneous systems.
Preliminary work on a benchmark study showed that even a limited set of only three computational 
patterns (linear algebra, stencil computations, general reduction operations) achieves 60% coverage 
of the bottlenecks of two well-established benchmarks suites (NAS Parallel benchmarks, Parboil). 
Using optimised libraries such as Intel MKL and Halide as well as established techniques for 
parallelising reduction computations we achieved at least 20% speedup in 46% of those benchmarks
running on an Intel i7-2860QM processor versus OpenMP baseline implementations. This 
reinforced our belief that providing compilers with recipes for heterogeneous hardware utilisation in
a few dozen particularly prevalent bottlenecks will be entirely sufficient to achieve very good 
hardware utilisation in many use cases. 
For compilers to recognise computational patterns in existing code, we developed a method to 
formalise computational patterns in terms of graph constraints on control flow, data flow and 
control dependence graphs. We paid particular attention to sufficient flexibility so that our 
recognition is robust enough to capture computational patterns across syntactically different 
implementations. We achieved good results on the above mentioned benchmark suites and are able 
to capture the previously identified computational patterns reliably using a prototype written for the 
LLVM compiler infrastructure.
In the near future we plan to extend our system to several more computational patterns and test it on
more complex code bases as well as on additional benchmark collections. Furthermore we will 
implement and train probabilistic models that capture the behaviours of specific implementations of
individual computational patterns. This will then allow our system to intelligently choose between 
competing options.


