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I. INTRODUCTION

Graph processing is an important part of data science, due
to the flexibility of graphs as a model for highly interrelated
data. A lot of research is invested in parallel and distributed
solutions for graph processing [1], [2], [3], [4], [5], [6],
[7], [8]. Most such frameworks simplify graph processing by
maintaining a separation between a front-end that uses high-
level primitives or DSLs, and a back-end that provides high-
performance implementations of these primitives.

There are many ways to implement the same primitive, and
different implementations perform best on different hardware:
a model that performs well on a CPU might perform horribly
on a GPU or on another accelerator. Understading which
implementation to choose is essential for the performance of
the application at hand. To make matters worse, performance
does not depend only on the underlying hardware, but also
on the structural properties of the graph being processed. In
this context, little progress has been made in quntifying this
impact and its correlation to the graph properties [9], [10].

In this work, we model the performance of graph processing
primitives running on GPUs. Our goal is to understand the
methodologies and tools to be used to eventually derive a
predictive model for such primitives. To do so, we compare
two different modeling approaches - analytical modeling and
statistical methods - and verify their usability on a specific
primitive - i.e., neighbour iteration (seen in algorithms such
as Page-Rank, label propagation, or graph coloring). Our
analytical model focuses on the work and time-complexity of
the algorithm [11]. Our statistical modeling combines machine
learning with performance counters data [12].

Our results demonstrate that a predictive model can be built
for such primitives only when combining analytical and sta-
tistical modeling. However, the modeling requires quite some
effort, and the prediction requires a complex set of parameters
combining application, platform, and dataset features.

II. BACKGROUND AND APPROACH

A. PageRank

PageRank is an algorithm that calculates rankings of vertices
by estimating how important they are. Importance is correlated
to the number of edges incoming from other vertices.

PageRank usually implemented for each node, iteratively,
using two steps: (1) compute the incoming page rank from
the previous iteration, and (2) normalize the new pagerank
using a damping factor. These operations are repeated until
convergence.

B. Approach and Results
We analyze four parallel versions of PageRank on the

GPU [11]: edge-centric, vertex-centric push, vertex-centric
pull, and vertex-centric pull no-div. Our initial results show
significant performance differences between these implemen-
tations, related to both the platform and the input graph.

Analytical Modeling: We have devised performance models
for our 4 PageRank versions by (1) evaluating the work of
the algorithm, and (2) emulating the GPU work scheduler to
devise a runtime estimate. The work is expressed as a function
of the graph properties. The GPU execution model takes into
account the high-level platform properties. Unfortunately, this
simplistic model is not accurate (error up to 50% in some
cases) due to the ovrsimplified GPU execution model.

Statistical Modeling: We demonstrate the use of the Black-
Forest tool [12] for our irregular graph processing primitive.
This attempt exposes two new challenges: (1) much more
profiling data is needed, and (2) there is not enough input
data for profiling. To generate suitable input instances, we
have built a graph generator that allows the user to built
synthetic graphs with a required set of properties1. These
graphs are being used to collect performance counter data
from the execution of our four different algorithms on the
GPU. Further, with the help of BlackForest, we use the data
to build the performance model and identify the performance
bottlenecks.

Refining the Analytical Model: Using the bottleneck anal-
ysis, we attempt to refine the GPU execution model we used
in the analytical modeling. Specifically, we aim to refine
our initial over-simplified GPU execution model to capture
these bottlenecks. Our expectation2 is that the accuracy of
the analytical model will increase significantly once the GPU
execution model is refined.

III. CONCLUSION

Graph processing is a new challenge for HPC platforms.
Therefore, new algorithms and new processing systems are
emerging quickly to address its performance needs. However,
most of these algorithms are not thoroughly analyzed in terms
of performance. Instead, a few empirical results that prove
them faster than (some) alternatives are considered sufficient
proof of their superiority. This is not sufficient for choosing
these algorithms as backbone implementations for processing
systems running on the truly large graphs.

In this work, we attempt a more systematic approach to
the performance analysis of such algorithms via performance
modeling. Specifically, we compared the analytical and sta-
tistical modeling of graph processing, demonstrating the ad-
vantages and disadvantages of both. We have further combined
them to build a better analytical model. We have validated our
model on the neighbour iteration primitive running on GPUs,
and found that this approach is feasible. However, for the near
future, it is unclear whether this approach can be automated.
We are now in the process of validating it for new primitives
and algorithms.

1While this is a much challenging problem than it seems, it is outside the
scope of this paper

2This is work in progress, to be completed in May.
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