
Automatic Parallelization in the Manycore Era

Diego R. Llanos, Arturo Gonzalez-Escribano
Dpto. Informática, Universidad de Valladolid, Spain

{diego,arturo}@infor.uva.es

Extended abstract

During the last decade, advances both in manycore processors design and par-
allel programming models have led to a rise of parallel development of regular
applications. One successful example is the ubiquous use of GPUs for parallel
computing. Irregular applications, on the other side, are still difficult to par-
allelize by hand, because they require a deep knowledge of the problem itself,
the parallel programming model being used, and the underlying architecture.
Having a system that automatically parallelize them would be highly desirable.
For an increasing number of applications, the use of advanced compile-time
techniques such as the polyhedral model allows to obtain parallel versions auto-
matically. However, many of them still defy automatic parallelization at compile
time, due to their complex control path, and to the lack of runtime information
that would be needed at compile time to ensure correctness. This is why a mech-
anism to automatically develop a parallel version of any sequential program is
still a desirable goal.

Thread-level speculation (TLS) is a well-known technique that allows to au-
tomatically extract parallelism of sequential applications, mostly at loop level.
Many software-based TLS proposals have been published so far, requiring dif-
ferent degrees of human intervention. Our contribution to the field is ATLaS,
a software-based TLS runtime library to safely execute in parallel any loop, in-
cluding those that may suffer from dependence violations. ATLaS is intended
to be used in the context of OpenMP programs, by offering a non-standard
speculative clause to let the user mark the variables whose use may lead to a
dependence violation, letting the runtime library to guarantee correctness in
any case. In fact, ATLaS can be used in fully-automatic mode, just by labeling
all variables of the loop as speculative, at the cost of a potential performance
loss.

The purpose of this contribution is to discuss the role of software-based TLS
solutions in the following years. From the software side, automatic paralleliza-
tion techniques such as those based on the polyhedral model extracts parallelism
from an increasing number of applications. The question here is whether this
reduces the need from speculative runtime techniques. From the hardware side,
the advent of manycore systems with dozens or hundreds of processors makes
classic TLS techniques to have diminished returns. To deal with this scenario,
an update of TLS runtime architectures may be desirable.

1


