
Identifying Parallel Patterns in C++ Codes

David del Rio Astorga,1 Manuel F. Dolz,1 Luis Miguel Sanchez,1

J. Daniel Garćıa,1 Marco Danelutto,2 Massimo Torquati2

1Department of Computer Science, University Carlos III of Madrid, 28911–Leganés, Spain.
2Department of Computer Science, University of Pisa, 56127–Pisa, Italy.

ABSTRACT

Introduction. Since free performance lunch of processors is over, parallelism has become the new trend in
hardware design and software development. Nevertheless, it remains a large portion of production software that
is still developed in sequential. Taking into account that these software modules contain millions of code lines,
the effort needed to identify parallel regions is extremely high. In this direction, we present Parallel Pattern
Analyzer Tool (PPAT), a software component that aids discovering and annotating parallel patterns in source
code. This tool eases the transformation from sequential source code into parallel.

FIG. 1: Workflow diagram of PPAT.

Workflow. Figure 1 depicts the general workflow diagram of PPAT. This tool takes advantage of the Clang
library to generate the Abstract Syntax Tree (AST) and walk through it in order to collect relevant information
about the source code and identify parallel patterns. First, the tool receives the sequential source code files that
should be analyzed. Next, the following steps are executed: i) Loop detection, ii) Feature extraction and iii)
Check arguments reference kind. Finally, marked loops are passed to the different pattern analyzer modules,
i.e., Pipeline, Farm and Map (three well-known parallel patterns). In the last stage, parallel pattern modules
are annotated by using RePhrase attributes syntax. The produced code will be refactored into parallel code.

Evaluation. We perform an experimental evaluation of PPAT to analyze how many loops of the benchmarks
Rodinia, NAS Parallel Benchmarks (NPB) can be refactored into parallel patterns. Our evaluation methodology
is based on a comparison between a manual inspection and an automatic one, using PPAT, of the loops appear-
ing in the benchmark codes. The experimental evaluation demonstrates that PPAT is able to obtain similar
performance results as the “handmade” parallel versions of the benchmark suites tested. Therefore, reducing
the human effort in transforming sequential codes into parallel code.

(a) Rodinia
PPAT Manual

Test Loops P F M P F M
b+tree 80 3 7 7 2 7 7

particlefilter 44 1 8 8 1 10 10
BFS 7 0 1 1 0 2 1
nw 12 0 6 6 0 6 6
cfd 78 16 12 12 15 13 13

lavamd 10 0 1 1 0 2 2
heartwall 54 1 4 2 0 4 3

nn 2 0 0 0 0 0 0
Backprop 28 0 2 2 0 5 5

(b) NAS
PPAT Manual

Test Loops P F M P F M
IS 16 1 8 8 0 9 9
LU 187 1 37 37 1 81 81
FT 41 0 7 7 3 20 20
EP 8 1 2 2 0 3 3
MG 80 1 26 26 1 44 44
UA 321 3 116 116 2 171 170
DC 30 2 5 5 1 7 7
SP 250 1 51 51 1 103 103
BT 181 1 46 46 1 78 78

TABLE I: Results for the Rodinia and NAS benchmark suites. P, F and M stand for the number of Pipeline, Farm and
Map patterns detected, respectively.

Conclusions. We presented PPAT, a tool that: i) is completely independent of the refactoring tool used,
since it identifies parallel patterns; ii) performs a static analysis and avoids the use of profiling techniques, and
thus, it becomes much faster than other approaches; and iii) guarantees that parallel patterns detected comply
with a series of requirements that ensure the correctness of the parallelization.


